| Citation: | Xiong ZHANG, Linlin YANG, Hong SHANGGUAN, Zefang HAN, Xinglong HAN, Anhong WANG, Xueying CUI. A Low-Dose CT Image Denoising Method Based on Generative Adversarial Network and Noise Level Estimation[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2404-2413. doi: 10.11999/JEIT200591 | 
 
	                | [1] | 张权. 低剂量X线CT重建若干问题研究[D]. [博士论文], 东南大学, 2015. ZHANG Quan. A study on some problems in image reconstruction for low-dose CT system[D]. [Ph. D. dissertation], Southeast University, 2015. | 
| [2] | HSIEH J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances[M]. Bellingham, USA: SPIE Press, 2009. | 
| [3] | BRENNER D J and HALL E J. Computed tomography-an increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277–2284. doi:  10.1056/NEJMra072149 | 
| [4] | NAIDICH D P, MARSHALL C H, GRIBBIN C, et al. Low-dose CT of the lungs: Preliminary observations[J]. Radiology, 1990, 175(3): 729–731. doi:  10.1148/radiology.175.3.2343122 | 
| [5] | CHEN Hu, ZHANG Yi, ZHANG Weihua, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2): 679–694. doi:  10.1364/BOE.8.000679 | 
| [6] | SHAN Hongming, ZHANG Yi, YANG Qingsong, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522–1534. doi:  10.1109/TMI.2018.2832217 | 
| [7] | CHEN Hu, ZHANG Yi, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524–2535. doi:  10.1109/TMI.2017.2715284 | 
| [8] | WU Dufan, KIM K, FAKHRI G E, et al. A cascaded convolutional neural network for X-ray low-dose CT image denoising[EB/OL]. https://arxiv.org/abs/1705.04267, 2017. | 
| [9] | WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536–2545. doi:  10.1109/TMI.2017.2708987 | 
| [10] | YANG Qingsong, YAN Pingkun, ZHANG Yanbo, et al. Low-Dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348–1357. doi:  10.1109/TMI.2018.2827462 | 
| [11] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th Conference and Workshop on Neural Information Processing Systems (NIPS), Cambridge, United States, 2014: 2672–2680. | 
| [12] | BAO Jianmin, CHEN Dong, WEN Fang, et al. CVAE-GAN: Fine-grained image generation through asymmetric training[C]. The IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2745–2754. | 
| [13] | ZHENG Jin, MA Haocheng, and PENG Lihui. A CNN-based image reconstruction for electrical capacitance tomography[C]. 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates, 2019: 1–6. doi: 10.1109/IST48021.2019.9010096. | 
| [14] | ZHANG Zhijun and JI Xiaopeng. GAN network solves the problem of image segmentation across data[C]. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 2019. doi: 10.1109/iaeac47372.2019.8998056. | 
| [15] | KIM D W, CHUNG J R, and JUNG S W. GRDN: Grouped residual dense network for real image denoising and GAN-based real-world noise modeling[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, USA, 2019. | 
| [16] | HE Zhang, VISHWANATH S, and VISHAL M P. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943–3956. doi:  10.1109/TCSVT.2019.2920407 | 
| [17] | ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1125–1134. | 
| [18] | ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi:  10.1109/TIP.2018.2839891 | 
| [19] | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. | 
| [20] | AAPM. Low dose CT grand challenge[EB/OL]. http://www.aapm.org/GrandChallenge/LowDoseCT/, 2017. | 
| [21] | Piglet Dataset[EB/OL]. http://homepage.usask.ca/~xiy525/. | 
| [22] | DIEDERK P K and JIMMY L B. Adam: A method for stochastic optimization[C]. International Conference on Learning Representations (ICLR), Ithaca, USA, 2015. | 
