Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
ZHAO Yan, ZHAO Lingjun, ZHANG Siqian, JI Kefeng, KUANG Gangyao. Few-Shot Class-Incremental SAR Image Target Recognition using Self-supervised Decoupled Dynamic Classifier[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3936-3948. doi: 10.11999/JEIT231470
Citation: Yongjun XU, Bowen GU, Yang YANG, Cuixian WU, Qianbin CHEN, Guangyue LU. Robust Energy-efficient Resource Allocation Algorithm in D2D Communication Networks with Imperfect CSI[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2189-2198. doi: 10.11999/JEIT200587

Robust Energy-efficient Resource Allocation Algorithm in D2D Communication Networks with Imperfect CSI

doi: 10.11999/JEIT200587
Funds:  The National Natural Science Foundation of China (61601071), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002), The Open Funding of Shaanxi Key Laboratory of Information Communication Network and Security (ICNS201904), The Graduate Scientific Research Innovation Project of Chongqing (CYS20251, CYS20253)
  • Received Date: 2020-07-16
  • Rev Recd Date: 2021-03-11
  • Available Online: 2021-04-12
  • Publish Date: 2021-08-10
  • Due to the impact of random channel delays and channel estimation errors, traditional optimal resource allocation algorithms in Device-to-Device (D2D) communication networks have weak robustness. In this paper, a robust resource allocation algorithm for the energy-efficient maximization of D2D users is proposed under parametric uncertainties. Specifically, a multi-user resource allocation model in the D2D network with an underlay spectrum sharing mode is established under the constraints of the interference power threshold, the minimum rate requirement, the maximum transmit power, and the sub-channel allocation. Based on the bounded channel uncertainty models, the original non-convex robust resource allocation problem is converted into a deterministic and convex one by using the worst-case approach. Accordingly, the analytical solution of the robust resource allocation problem is obtained by using Lagrange dual theory. Simulation results demonstrate the proposed algorithm has good robustness.
  • [1]
    WAQAS M, NIU Yong, LI Yong, et al. A comprehensive survey on mobility-aware D2D communications: Principles, practice and challenges[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1863–1886. doi: 10.1109/COMST.2019.2923708
    [2]
    AHMED M, LI Yong, WAQAS M, et al. A Survey on socially aware device-to-device communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2169–2197. doi: 10.1109/COMST.2018.2820069
    [3]
    LIU Xiaonan, LI Zan, ZHAO Nan, et al. Transceiver design and multihop D2D for UAV IoT coverage in disasters[J]. IEEE Internet of Things Journal, 2019, 6(2): 1803–1815. doi: 10.1109/JIOT.2018.2877504
    [4]
    钱志鸿, 王雪. 面向5G通信网的D2D技术综述[J]. 通信学报, 2016, 37(7): 1–14. doi: 10.11959/j.issn.1000-436x.2016129

    QIAN Zhihong and WANG Xue. Reviews of D2D technology for 5G communication networks[J]. Journal on Communications, 2016, 37(7): 1–14. doi: 10.11959/j.issn.1000-436x.2016129
    [5]
    LAI Weikuang, WANG Youchiun, LIN H C, et al. Efficient resource allocation and power control for LTE-A D2D communication with pure D2D model[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3202–3216. doi: 10.1109/TVT.2020.2964286
    [6]
    AMJAD M, REHMANI M H, and MAO Shiwen. Wireless multimedia cognitive radio networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1056–1103. doi: 10.1109/COMST.2018.2794358
    [7]
    AWIN F, ABDEL-RAHEEM E, and TEPE K. Blind spectrum sensing approaches for interweaved cognitive radio system: A tutorial and short course[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 238–259. doi: 10.1109/COMST.2018.2863681
    [8]
    钱志鸿, 蒙武杰, 王雪, 等. 全负载蜂窝网络下多复用D2D通信功率分配算法研究[J]. 电子与信息学报, 2020, 42(12): 2939–2945. doi: 10.11999/JEIT190974

    QIAN Zhihong, MENG Wujie, WANG Xue, et al. Research on power allocation algorithm of multi-to-one multiplexing D2D communication underlaying full load cellular networks[J]. Journal of Electronics &Information Technology, 2020, 42(12): 2939–2945. doi: 10.11999/JEIT190974
    [9]
    SULTANA A, ZHAO Lian, and FERNANDO X. Efficient resource allocation in device-to-device communication using cognitive radio technology[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10024–10034. doi: 10.1109/TVT.2017.2743058
    [10]
    WAQAS M, ASLAM S, ALI Z, et al. Resource optimization for cognitive radio based device to device communication under an energy harvesting scenario[J]. IEEE Access, 2020, 8: 24862–24872. doi: 10.1109/ACCESS.2020.2970464
    [11]
    WU Xiaolu, CHEN Yueyun, YUAN Xiaopan, et al. Joint resource allocation and power control for cellular and device-to-device multicast based on cognitive radio[J]. IET Communications, 2014, 8(16): 2805–2813. doi: 10.1049/iet-com.2013.1041
    [12]
    CHENG Peng, DENG Lei, YU Hui, et al. Resource allocation for cognitive networks with D2D communication: An evolutionary approach[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 2012: 2671–2676.
    [13]
    谢显中, 田瑜, 姚鑫凌, 等. 认知网络中D2D全双工通信的速率最大化功率分配算法[J]. 电子与信息学报, 2017, 39(4): 1002–1006. doi: 10.11999/JEIT160593

    XIE Xianzhong, TIAN Yu, YAO Xinling, et al. Power allocation algorithm of maximizing rate for D2D full-duplex communication in cognitive networks[J]. Journal of Electronics &Information Technology, 2017, 39(4): 1002–1006. doi: 10.11999/JEIT160593
    [14]
    ZAPPONE A, MATTHIESEN B, and JORSWIECK E A. Energy efficiency in MIMO underlay and overlay device-to-device communications and cognitive radio systems[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 1026–1041. doi: 10.1109/TSP.2016.2626249
    [15]
    ZHOU Zhenyu, MA Guifang, XU Chen, et al. Energy-efficient resource allocation in cognitive D2D communications: A game-theoretical and matching approach[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 814–819.
    [16]
    XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
    [17]
    BEN-TAL A and NEMIROVSKI A. Robust convex optimization[J]. Mathematics of Operations Research, 1998, 23(4): 769–805. doi: 10.1287/moor.23.4.769
    [18]
    PARK M J and KWON O M. Stability and stabilization of discrete-time T-S fuzzy systems with time-varying delay via Cauchy-Schwartz-based summation inequality[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 128–140. doi: 10.1109/TFUZZ.2016.2551290
    [19]
    FANG Fang, CHENG Julian, and DING Zhiguo. Joint energy efficient subchannel and power optimization for a downlink NOMA heterogeneous network[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1351–1364. doi: 10.1109/TVT.2018.2881314
    [20]
    DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492
    [21]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [22]
    ZHANG Haijun, JIANG Chunxiao, BEAULIEU N C, et al. Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services[J]. IEEE Transactions on Communications, 2014, 62(7): 2366–2377. doi: 10.1109/TCOMM.2014.2328574
    [23]
    BAI Zhiquan, LI Mengqi, DONG Yanan, et al. Joint fair resource allocation of D2D communication underlaying downlink cellular system with imperfect CSI[J]. IEEE Access, 2018, 6: 63131–63142. doi: 10.1109/ACCESS.2018.2873364
    [24]
    HU Jinming, HENG Wei, LI Xiang, et al. Energy-efficient resource reuse scheme for D2D communications underlaying cellular networks[J]. IEEE Communications Letters, 2017, 21(9): 2097–2100. doi: 10.1109/LCOMM.2017.2711490
  • Cited by

    Periodical cited type(16)

    1. 贾盼盼,马雪雪,孙江峰. 基于无线衰落的SIMO中继网络物理层安全性能分析. 无线电工程. 2024(03): 543-549 .
    2. 张晓茜,徐勇军,吴翠先,黄崇文. 智能反射面增强的全双工环境反向散射通信系统波束成形算法. 电子与信息学报. 2024(03): 914-924 . 本站查看
    3. 潘钰,胡航,金虎,雷迎科,冯辉,姜丽,张孟伯. 非授权频段下无人机辅助通信的轨迹与资源分配优化. 电子与信息学报. 2024(11): 4287-4294 . 本站查看
    4. 张延良,田月华,李兴旺,黄高见. 基于MF协议的协作NOMA系统物理层安全性能研究. 电子与信息学报. 2023(04): 1211-1218 . 本站查看
    5. 李兴旺,李岩聪,高向川,于青萍,黄高见. 非理想条件下认知非正交多址接入系统中断性能研究. 电子与信息学报. 2023(07): 2415-2422 . 本站查看
    6. 仲星,李君,李正权,朱明浩,沈国丽,张茜茜. D2D通信网络中基于深度强化学习的能效优化. 计算机与数字工程. 2023(11): 2475-2482+2489 .
    7. 陈雨洁,马彩虹. 基于联盟博弈的D2D网络资源分配算法研究. 电子技术应用. 2022(02): 51-54+59 .
    8. 陈慧,张铭宇,李兴旺,孙江峰,李美玲. I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析. 电子与信息学报. 2022(03): 987-995 . 本站查看
    9. 王茜竹,胡洪瑞,徐勇军,张海波,周继华,陈莉. 基于能量收集的UAV-D2D网络资源分配算法. 电子与信息学报. 2022(03): 976-986 . 本站查看
    10. 吴官翰,贾维敏,赵建伟,高飞飞,姚敏立. 基于多智能体强化学习的混合博弈模式下多无人机辅助通信系统设计. 电子与信息学报. 2022(03): 940-950 . 本站查看
    11. 徐勇军,徐然,周继华,万杨亮,黄崇文,刘伯红. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法. 电子与信息学报. 2022(07): 2253-2263 . 本站查看
    12. 刘期烈,辛雅楠,高俊鹏,周继华,黄东,赵涛. 可重构智能表面辅助的非正交多址接入网络鲁棒能量效率资源分配算法. 电子与信息学报. 2022(07): 2332-2341 . 本站查看
    13. 徐勇军,高正念,王茜竹,周继华,黄东. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法. 电子与信息学报. 2022(07): 2317-2324 . 本站查看
    14. 高俊鹏,周继华,赵涛,徐勇军,赵瑞莉. 基于硬件损伤的智能反射面辅助安全通信系统能效优化算法. 电子与信息学报. 2022(07): 2349-2357 . 本站查看
    15. 徐勇军,杨蒙,周继华,陈前斌. 基于数能同传的D2D网络鲁棒资源分配算法. 中国科学:信息科学. 2022(10): 1883-1899 .
    16. 徐勇军,杨浩克,李国军,陈前斌. 多标签无线供电反向散射通信网络能效优化算法. 电子与信息学报. 2022(10): 3492-3498 . 本站查看

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1346) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return