Citation: | Bin LIU, Jing LIU, Chao WU, Youheng YANG. Correntropy Extreme Learning Machine Based on Spatial Pyramid Matching and Local Receptive Field[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2343-2351. doi: 10.11999/JEIT200562 |
[1] |
CSURKA G, DANCE C R, FAN Lixin, et al. Visual categorization with bags of keypoints[C]. Workshop on Statistical Learning in Computer Vision, European Conference on Computer Vision, Prague, Czech Republic, 2004: 1–22.
|
[2] |
LAZEBNIK S, SCHMID C, and PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169–2178. doi: 10.1109/CVPR.2006.68.
|
[3] |
LI Qing, PENG Qiang, CHEN Junzhou, et al. Improving image classification accuracy with ELM and CSIFT[J]. Computing in Science & Engineering, 2019, 21(5): 26–34. doi: 10.1109/MCSE.2018.108164708
|
[4] |
HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126
|
[5] |
PARK J M and KIM J H. Online recurrent extreme learning machine and its application to time-series prediction[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 1983–1990. doi: 10.1109/ijcnn.2017.7966094.
|
[6] |
LIU Zheng, WEI Jin, and YING Mu. Variances-constrained weighted extreme learning machine for imbalanced classification[J]. Neurocomputing, 2020, 403: 45–52.
|
[7] |
刘彬, 杨有恒, 赵志彪, 等. 一种基于正则优化的批次继承极限学习机算法[J]. 电子与信息学报, 2020, 42(7): 1734–1742. doi: 10.11999/JEIT190502
LIU Bin, YANG Youheng, ZHAO Zhibiao, et al. A batch inheritance extreme learning machine algorithm based on regular optimization[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1734–1742. doi: 10.11999/JEIT190502
|
[8] |
HUANG Guangbin, BAI Zuo, KASUN L L C, et al. Local receptive fields based extreme learning machine[J]. IEEE Computational Intelligence Magazine, 2015, 10(2): 18–29. doi: 10.1109/mci.2015.2405316
|
[9] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, New York, USA, 2012: 1097–1105.
|
[10] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
|
[11] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/cvpr.2015.7298594.
|
[12] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[13] |
XING Hongjie and WANG Xinmei. Training extreme learning machine via regularized correntropy criterion[J]. Neural Computing and Applications, 2013, 23(7/8): 1977–1986. doi: 10.1007/s00521-012-1184-y
|
[14] |
吴超, 李雅倩, 张亚茹, 等. 用于表示级特征融合与分类的相关熵融合极限学习机[J]. 电子与信息学报, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186
WU Chao, LI Yaqian, ZHANG Yaru, et al. Correntropy-based fusion extreme learning machine for representation level feature fusion and classification[J]. Journal of Electronics &Information Technology, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186
|
[15] |
李雅倩, 吴超, 李海滨, 等. 局部位置特征与全局轮廓特征相结合的图像分类方法[J]. 电子学报, 2018, 46(7): 1726–1731. doi: 10.3969/j.issn.0372-2112.2018.07.026
LI Yaqian, WU Chao, LI Haibin, et al. Image classification method combining local position feature with global contour feature[J]. Acta Electronica Sinica, 2018, 46(7): 1726–1731. doi: 10.3969/j.issn.0372-2112.2018.07.026
|
[16] |
HUANG Jinghong, YU Zhuliang, CAI Zhaoquan, et al. Extreme learning machine with multi-scale local receptive fields for texture classification[J]. Multidimensional Systems and Signal Processing, 2017, 28(3): 995–1011. doi: 10.1007/s11045-016-0414-3
|
[17] |
KONIUSZ P, YAN Fei, GOSSELIN P H, et al. Higher-order occurrence pooling for bags-of-words: Visual concept detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 313–326. doi: 10.1109/TPAMI.2016.2545667
|
[18] |
WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-constrained Linear Coding for image classification[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 13–18. doi: 10.1109/CVPR.2010.5540018.
|
[19] |
肖文华, 包卫东, 陈立栋, 等. 一种用于图像分类的语义增强线性编码方法[J]. 电子与信息学报, 2015, 37(4): 791–797. doi: 10.11999/JEIT140743
XIAO Wenhua, BAO Weidong, CHEN Lidong, et al. A semantic enhanced linear coding for image classification[J]. Journal of Electronics &Information Technology, 2015, 37(4): 791–797. doi: 10.11999/JEIT140743
|
[20] |
LI Weisheng, DONG Peng, XIAO Bin, et al. Object recognition based on the region of interest and optimal bag of words model[J]. Neurocomputing, 2016, 172: 271–280. doi: 10.1016/j.neucom.2015.01.083
|
[21] |
KHAN R, BARAT C, MUSELET D, et al. Spatial histograms of soft pairwise similar patches to improve the bag-of-visual-words model[J]. Computer Vision and Image Understanding, 2015, 132: 102–112. doi: 10.1016/j.cviu.2014.09.005
|
[22] |
姜轩. 基于深度学习的场景图像分类算法研究[D]. [硕士论文], 北京邮电大学, 2019.
JIANG Xuan. Research on scene image classification algrithm based on deep learning[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
|