Citation: | Xin YU, Huixia LU, Lingzhen WU, Liuming XU. A New One-layer Recurrent Neural Network for Solving Nonsmooth Pseudoconvex Optimization Problems[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2421-2429. doi: 10.11999/JEIT200558 |
[1] |
TANK D W and HOPFIELD J. Simple ‘neural’ optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems, 1986, 33(5): 533–541. doi: 10.1109/TCS.1986.1085953
|
[2] |
KENNEDY M P and CHUA L O. Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5): 554–562. doi: 10.1109/31.1783
|
[3] |
XUE Xiaoping and BIAN Wei. Subgradient-based neural networks for nonsmooth convex optimization problems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(8): 2378–2391. doi: 10.1109/TCSI.2008.920131
|
[4] |
QIN Sitian, FAN Dejun, WU Guangxi, et al. Neural network for constrained nonsmooth optimization using Tikhonov regularization[J]. Neural Networks, 2015, 63: 272–281. doi: 10.1016/j.neunet.2014.12.007
|
[5] |
QIN Sitian and XUE Xiaoping. A two-layer recurrent neural network for nonsmooth convex optimization problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6): 1149–1160. doi: 10.1109/TNNLS.2014.2334364
|
[6] |
LI Qingfa, LIU Yaqiu, and ZHU Liangkuan. Neural network for nonsmooth pseudoconvex optimization with general constraints[J]. Neurocomputing, 2014, 131: 336–347. doi: 10.1016/j.neucom.2013.10.008
|
[7] |
LIU Qingshan, GUO Zhishan, and WANG Jun. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[J]. Neural Networks, 2012, 26: 99–109. doi: 10.1016/j.neunet.2011.09.001
|
[8] |
HOSSEINI A. A non-penalty recurrent neural network for solving a class of constrained optimization problems[J]. Neural Networks, 2016, 73: 10–25. doi: 10.1016/j.neunet.2015.09.013
|
[9] |
QIN Sitian, YANG Xiudong, XUE Xiaoping, et al. A one-layer recurrent neural network for pseudoconvex optimization problems with equality and inequality constraints[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3063–3074. doi: 10.1109/TCYB.2016.2567449
|
[10] |
BIAN Wei, MA Litao, QIN Sitian, et al. Neural network for nonsmooth pseudoconvex optimization with general convex constraints[J]. Neural Networks, 2018, 101: 1–14. doi: 10.1016/j.neunet.2018.01.008
|
[11] |
高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12): 2812–2819. doi: 10.11999/JEIT180209
GAO Xin, LI Hui, ZHANG Yi, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2812–2819. doi: 10.11999/JEIT180209
|
[12] |
LIU Na and QIN Sitian. A neurodynamic approach to nonlinear optimization problems with affine equality and convex inequality constraints[J]. Neural Networks, 2019, 109: 147–158. doi: 10.1016/j.neunet.2018.10.010
|
[13] |
YU Xin, WU Lingzhen, XU Chenhua, et al. A novel neural network for solving nonsmooth nonconvex optimization problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1475–1488. doi: 10.1109/TNNLS.2019.2920408
|
[14] |
LI Wenjing, BIAN Wei, and XUE Xiaoping. Projected neural network for a class of Non-Lipschitz optimization problems with linear constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3361–3373. doi: 10.1109/TNNLS.2019.2944388
|
[15] |
XU Chen, CHAI Yiyuan, QIN Sitian, et al. A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem[J]. Neural Networks, 2020, 124: 180–192. doi: 10.1016/j.neunet.2019.12.015
|
[16] |
喻昕, 许治健, 陈昭蓉, 等. 拉格朗日神经网络解决带等式和不等式约束的非光滑非凸优化问题[J]. 电子与信息学报, 2017, 39(8): 1950–1955. doi: 10.11999/JEIT161049
YU Xin, XU Zhijian, CHEN Zhaorong, et al. Lagrange neural network for nonsmooth nonconvex optimization problems with equality and inequality constrains[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1950–1955. doi: 10.11999/JEIT161049
|
[17] |
CHENG Long, HOU Zengguang, LIN Yingzi, et al. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks[J]. IEEE Transactions on Neural Networks, 2011, 22(5): 714–726. doi: 10.1109/TNN.2011.2109735
|
[18] |
BIAN Wei and XUE Xiaoping. Subgradient-based neural networks for nonsmooth nonconvex optimization problems[J]. IEEE Transactions on Neural Networks, 2009, 20(6): 1024–1038. doi: 10.1109/TNN.2009.2016340
|
[19] |
LIU Qingshan and WANG Jun. A one-layer recurrent neural network for constrained nonsmooth optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
|
[20] |
QIN Sitian, FAN Dejun, SU Peng, et al. A simplified recurrent neural network for pseudoconvex optimization subject to linear equality constraints[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 789–798. doi: 10.1016/j.cnsns.2013.08.034
|
[21] |
QIN Sitian, BIAN Wei, and XUE Xiaoping. A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization[J]. Neurocomputing, 2013, 120: 655–662. doi: 10.1016/j.neucom.2013.01.025
|
[22] |
AUBIN J P and CELLINA A. Differential Inclusions[M]. Berlin, Germany: Springer-Verlag, 1984: 77.
|