Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Xiaohe CHEN, Xugang CAO, Jiansheng CHEN, Chunhua HU, Yu MA. Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543
Citation: Xiaohe CHEN, Xugang CAO, Jiansheng CHEN, Chunhua HU, Yu MA. Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543

Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients

doi: 10.11999/JEIT200543
Funds:  The National Natural Science Foundation of China (61673234)
  • Received Date: 2020-04-12
  • Rev Recd Date: 2021-03-24
  • Available Online: 2021-04-29
  • Publish Date: 2021-12-21
  • Freezing of Gait (FoG) is a common symptom among patients with Parkinson’s Disease (PD). In this paper, a vision-based method is proposed to recognize automatically the shuffling step symptom from the Timed Up-and-Go (TUG) videos based. In this method, a feature extraction block is utilized to extract features from image sequences, then features are fused along a temporal dimension, and these features are fed into a classification layer. In this experiment, the dataset with 364 normal gait examples and 362 shuffling step examples is used. And the experiment on the collected dataset shows that the average accuracy of the best method is 91.3%. Using this method, the symptom of the shuffling step can be recognized automatically and efficiently from TUG videos, showing the possibility to remotely monitor the movement condition of PD patients.
  • loading
  • [1]
    GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the global burden of disease study 2016[J]. The Lancet Neurology, 2018, 17(11): 939–953. doi: 10.1016/S1474-4422(18)30295-3
    [2]
    BLOEM B R, HAUSDORFF J M, VISSER J E, et al. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena[J]. Movement Disorders, 2004, 19(8): 871–884. doi: 10.1002/mds.20115
    [3]
    DE LAU L M L and BRETELER M M B. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006, 5(6): 525–535. doi: 10.1016/S1474-4422(06)70471-9
    [4]
    SVEINBJORNSDOTTIR S. The clinical symptoms of Parkinson’s disease[J]. Journal of Neurochemistry, 2016, 139(S1): 318–324. doi: 10.1111/jnc.13691
    [5]
    FERRAYE M U, DEBÛ B, and POLLAK P. Deep brain stimulation effect on freezing of gait[J]. Movement Disorders, 2008, 23(S2): S489–S494. doi: 10.1002/mds.21975
    [6]
    GILADI N and HERMAN T. How do i examine Parkinsonian gait?[J]. Movement Disorders Clinical Practice, 2016, 3(4): 427. doi: 10.1002/mdc3.12347
    [7]
    SCHAAFSMA J D, BALASH Y, GUREVICH T, et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease[J]. European Journal of Neurology, 2003, 10(4): 391–398. doi: 10.1046/j.1468-1331.2003.00611.x
    [8]
    CAMPS J, SAMÀ A, MARTÍN M, et al. Deep learning for detecting freezing of gait episodes in Parkinson’s disease based on accelerometers[C]. The 14th International Work-Conference on Artificial Neural Networks, Cadiz, Spain, 2017: 344–355. doi: 10.1007/978-3-319-59147-6_30.
    [9]
    MILETI I, GERMANOTTA M, ALCARO S, et al. Gait partitioning methods in Parkinson’s disease patients with motor fluctuations: A comparative analysis[C]. IEEE International Symposium on Medical Measurements and Applications, Rochester, USA, 2017: 402–407. doi: 10.1109/MeMeA.2017.7985910.
    [10]
    NGUYEN T N, HUYNH H H, and MEUNIER J. Skeleton-based abnormal gait detection[J]. Sensors, 2016, 16(11): 1792. doi: 10.3390/s16111792
    [11]
    高发荣, 王佳佳, 席旭刚, 等. 基于粒子群优化-支持向量机方法的下肢肌电信号步态识别[J]. 电子与信息学报, 2015, 37(5): 1154–1159. doi: 10.11999/JEIT141083

    GAO Farong, WANG Jiajia, XI Xugang, et al. Gait recognition for lower extremity electromyographic signals based on PSO-SVM method[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1154–1159. doi: 10.11999/JEIT141083
    [12]
    MORRIS T R, CHO C, DILDA V, et al. Clinical assessment of freezing of gait in Parkinson’s disease from computer-generated animation[J]. Gait & Posture, 2013, 38(2): 326–329. doi: 10.1016/j.gaitpost.2012.12.011
    [13]
    HU Kun, WANG Zhiyong, MEI Shaohui, et al. Vision-based freezing of gait detection with anatomic directed graph representation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(4): 1215–1225. doi: 10.1109/JBHI.2019.2923209
    [14]
    TANG Yunqi, LI Zhuorong, TIAN Huawei, et al. Detecting toe-off events utilizing a vision-based method[J]. Entropy, 2019, 21(4): 329. doi: 10.3390/e21040329
    [15]
    WOLF T, BABAEE M, and RIGOLL G. Multi-view gait recognition using 3D convolutional neural networks[C]. IEEE International Conference on Image Processing, Phoenix, USA, 2016: 4165–4169. doi: 10.1109/ICIP.2016.7533144.
    [16]
    刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116

    LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
    [17]
    吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477

    WU Peiliang, YANG Xiao, MAO Bingyi, et al. A perspective-independent method for behavior recognition in depth video via temporal-spatial correlating[J]. Journal of Electronics &Information Technology, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
    [18]
    TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497. doi: 10.1109/ICCV.2015.510.
    [19]
    LIU Jiawei, ZHA Zhengjun, CHEN Xuejin, et al. Dense 3D-convolutional neural network for person re-identification in videos[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(1S): 8. doi: 10.1145/3231741
    [20]
    QIU Zhaofan, YAO Ting, and MEI Tao. Learning spatio-temporal representation with pseudo-3D residual networks[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5534–5542. doi: 10.1109/ICCV.2017.590.
    [21]
    CHAO Hanqing, HE Yiwei, ZHANG Junping, et al. Gaitset: Regarding gait as a set for cross-view gait recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8126–8133. doi: 10.1609/aaai.v33i01.33018126
    [22]
    PODSIADLO D and RICHARDSON S. The timed “up & go”: A test of basic functional mobility for frail elderly persons[J]. Journal of the American Geriatrics Society, 1991, 39(2): 142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x
    [23]
    LI Tianpeng, CHEN Jiansheng, HU Chunhua, et al. Automatic timed up-and-go sub-task segmentation for Parkinson’s disease patients using video-based activity classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(11): 2189–2199. doi: 10.1109/TNSRE.2018.2875738
    [24]
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    [25]
    LI Tianpeng, WAN Weitao, HUANG Yiqing, et al. Improving human parsing by extracting global information using the non-local operation[C]. IEEE International Conference on Image Processing, Taipei, China, 2019: 2961–2965. doi: 10.1109/ICIP.2019.8804412.
    [26]
    FU Yang, WEI Yunchao, ZHOU Yuqian, et al. Horizontal pyramid matching for person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8295–8302. doi: 10.1609/aaai.v33i01.33018295
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1114) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return