Citation: | Xiaohe CHEN, Xugang CAO, Jiansheng CHEN, Chunhua HU, Yu MA. Shuffling Step Recognition Using 3D Convolution for Parkinsonian Patients[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3467-3475. doi: 10.11999/JEIT200543 |
[1] |
GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the global burden of disease study 2016[J]. The Lancet Neurology, 2018, 17(11): 939–953. doi: 10.1016/S1474-4422(18)30295-3
|
[2] |
BLOEM B R, HAUSDORFF J M, VISSER J E, et al. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena[J]. Movement Disorders, 2004, 19(8): 871–884. doi: 10.1002/mds.20115
|
[3] |
DE LAU L M L and BRETELER M M B. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006, 5(6): 525–535. doi: 10.1016/S1474-4422(06)70471-9
|
[4] |
SVEINBJORNSDOTTIR S. The clinical symptoms of Parkinson’s disease[J]. Journal of Neurochemistry, 2016, 139(S1): 318–324. doi: 10.1111/jnc.13691
|
[5] |
FERRAYE M U, DEBÛ B, and POLLAK P. Deep brain stimulation effect on freezing of gait[J]. Movement Disorders, 2008, 23(S2): S489–S494. doi: 10.1002/mds.21975
|
[6] |
GILADI N and HERMAN T. How do i examine Parkinsonian gait?[J]. Movement Disorders Clinical Practice, 2016, 3(4): 427. doi: 10.1002/mdc3.12347
|
[7] |
SCHAAFSMA J D, BALASH Y, GUREVICH T, et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease[J]. European Journal of Neurology, 2003, 10(4): 391–398. doi: 10.1046/j.1468-1331.2003.00611.x
|
[8] |
CAMPS J, SAMÀ A, MARTÍN M, et al. Deep learning for detecting freezing of gait episodes in Parkinson’s disease based on accelerometers[C]. The 14th International Work-Conference on Artificial Neural Networks, Cadiz, Spain, 2017: 344–355. doi: 10.1007/978-3-319-59147-6_30.
|
[9] |
MILETI I, GERMANOTTA M, ALCARO S, et al. Gait partitioning methods in Parkinson’s disease patients with motor fluctuations: A comparative analysis[C]. IEEE International Symposium on Medical Measurements and Applications, Rochester, USA, 2017: 402–407. doi: 10.1109/MeMeA.2017.7985910.
|
[10] |
NGUYEN T N, HUYNH H H, and MEUNIER J. Skeleton-based abnormal gait detection[J]. Sensors, 2016, 16(11): 1792. doi: 10.3390/s16111792
|
[11] |
高发荣, 王佳佳, 席旭刚, 等. 基于粒子群优化-支持向量机方法的下肢肌电信号步态识别[J]. 电子与信息学报, 2015, 37(5): 1154–1159. doi: 10.11999/JEIT141083
GAO Farong, WANG Jiajia, XI Xugang, et al. Gait recognition for lower extremity electromyographic signals based on PSO-SVM method[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1154–1159. doi: 10.11999/JEIT141083
|
[12] |
MORRIS T R, CHO C, DILDA V, et al. Clinical assessment of freezing of gait in Parkinson’s disease from computer-generated animation[J]. Gait & Posture, 2013, 38(2): 326–329. doi: 10.1016/j.gaitpost.2012.12.011
|
[13] |
HU Kun, WANG Zhiyong, MEI Shaohui, et al. Vision-based freezing of gait detection with anatomic directed graph representation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(4): 1215–1225. doi: 10.1109/JBHI.2019.2923209
|
[14] |
TANG Yunqi, LI Zhuorong, TIAN Huawei, et al. Detecting toe-off events utilizing a vision-based method[J]. Entropy, 2019, 21(4): 329. doi: 10.3390/e21040329
|
[15] |
WOLF T, BABAEE M, and RIGOLL G. Multi-view gait recognition using 3D convolutional neural networks[C]. IEEE International Conference on Image Processing, Phoenix, USA, 2016: 4165–4169. doi: 10.1109/ICIP.2016.7533144.
|
[16] |
刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
|
[17] |
吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
WU Peiliang, YANG Xiao, MAO Bingyi, et al. A perspective-independent method for behavior recognition in depth video via temporal-spatial correlating[J]. Journal of Electronics &Information Technology, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
|
[18] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497. doi: 10.1109/ICCV.2015.510.
|
[19] |
LIU Jiawei, ZHA Zhengjun, CHEN Xuejin, et al. Dense 3D-convolutional neural network for person re-identification in videos[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(1S): 8. doi: 10.1145/3231741
|
[20] |
QIU Zhaofan, YAO Ting, and MEI Tao. Learning spatio-temporal representation with pseudo-3D residual networks[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5534–5542. doi: 10.1109/ICCV.2017.590.
|
[21] |
CHAO Hanqing, HE Yiwei, ZHANG Junping, et al. Gaitset: Regarding gait as a set for cross-view gait recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8126–8133. doi: 10.1609/aaai.v33i01.33018126
|
[22] |
PODSIADLO D and RICHARDSON S. The timed “up & go”: A test of basic functional mobility for frail elderly persons[J]. Journal of the American Geriatrics Society, 1991, 39(2): 142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x
|
[23] |
LI Tianpeng, CHEN Jiansheng, HU Chunhua, et al. Automatic timed up-and-go sub-task segmentation for Parkinson’s disease patients using video-based activity classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(11): 2189–2199. doi: 10.1109/TNSRE.2018.2875738
|
[24] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
|
[25] |
LI Tianpeng, WAN Weitao, HUANG Yiqing, et al. Improving human parsing by extracting global information using the non-local operation[C]. IEEE International Conference on Image Processing, Taipei, China, 2019: 2961–2965. doi: 10.1109/ICIP.2019.8804412.
|
[26] |
FU Yang, WEI Yunchao, ZHOU Yuqian, et al. Horizontal pyramid matching for person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8295–8302. doi: 10.1609/aaai.v33i01.33018295
|