Citation: | Junjie JIA, Yuchao ZHANG, Pengtao LIU, Wanghu CHEN. Fusion Bias Dynamic Expert Trust Recommendation Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2370-2377. doi: 10.11999/JEIT200539 |
[1] |
ADOMAVICIUS G and TUZHILIN A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734–749. doi: 10.1109/TKDE.2005.99
|
[2] |
KOENIGSTEIN N and PAQUET U. Xbox movies recommendations: Variational Bayes matrix factorization with embedded feature selection[C]. Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013. doi: 10.1145/2507157.2507168.
|
[3] |
KIM T H, PARK S I, and YANG S B. Improving prediction quality in collaborative filtering based on clustering[C]. Proceedings of 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, Australia, 2008: 704–710. doi: 10.1109/WIIAT.2008.319.
|
[4] |
KOOHI H and KIANI K. User based collaborative filtering using fuzzy C-means[J]. Measurement, 2016, 91: 134–139. doi: 10.1016/j.measurement.2016.05.058
|
[5] |
龚敏, 邓珍荣, 黄文明. 基于用户聚类与Slope One填充的协同推荐算法[J]. 计算机工程与应用, 2018, 54(22): 139–143. doi: 10.3778/j.issn.1002-8331.1707-0336
GONG Min, DENG Zhenrong, and HUANG Wenming. Collaborative recommendation algorithm based on user clustering and Slope One filling[J]. Computer Engineering and Applications, 2018, 54(22): 139–143. doi: 10.3778/j.issn.1002-8331.1707-0336
|
[6] |
MASSA P and AVESANI P. Trust-aware recommender systems[C]. Proceedings of the 2007 ACM conference on Recommender Systems, Minneapolis, USA, 2007: 17–24.
|
[7] |
YUAN W, SHU L, CHAO H C, et al. ITARS: Trust-aware recommender system using implicit trust networks[J]. IET Communications, 2010, 4(14): 1709–1721. doi: 10.1049/iet-com.2009.0733
|
[8] |
LIU Fengkun and LEE H J. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7): 4772–4778. doi: 10.1016/j.eswa.2009.12.061
|
[9] |
郭弘毅, 刘功申, 苏波, 等. 融合社区结构和兴趣聚类的协同过滤推荐算法[J]. 计算机研究与发展, 2016, 53(8): 1664–1672. doi: 10.7544/issn1000-1239.2016.20160175
GUO Hongyi, LIU Gongshen, SU Bo, et al. Collaborative filtering recommendation algorithm combining community structure and interest clusters[J]. Journal of Computer Research and Development, 2016, 53(8): 1664–1672. doi: 10.7544/issn1000-1239.2016.20160175
|
[10] |
张凯涵, 梁吉业, 赵兴旺, 等. 一种基于社区专家信息的协同过滤推荐算法[J]. 计算机研究与发展, 2018, 55(5): 968–976. doi: 10.7544/issn1000-1239.2018.20170253
ZHANG Kaihan, LINAG Jiye, ZHAO Xingwang, et al. A collaborative filtering recommendation algorithm based on information of community experts[J]. Journal of Computer Research and Development, 2018, 55(5): 968–976. doi: 10.7544/issn1000-1239.2018.20170253
|
[11] |
GHAVIPOUR M and MEYBODI M R. An adaptive fuzzy recommender system based on learning automata[J]. Electronic Commerce Research and Applications, 2016, 20: 105–115. doi: 10.1016/j.elerap.2016.10.002
|
[12] |
BEDI P and VASHISTH P. Empowering recommender systems using trust and argumentation[J]. Information Sciences, 2014, 279: 569–586. doi: 10.1016/j.ins.2014.04.012
|
[13] |
AMATRIAIN X, LATHIA N, PUJOL J M, et al. The wisdom of the few: A collaborative filtering approach based on expert opinions from the web[C]. The 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, USA, 2009: 532–539. doi: 10.1145/1571941.1572033.
|
[14] |
BREESE J S, HECKERMAN D, and KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]. The 14th Conference on Uncertainty in Artificial Intelligence, San Francisco, USA, 1998.
|
[15] |
贾彭慧, 刘鑫一, 孔亚斌, 等. 基于专家动态生成的协同过滤推荐算法[J]. 计算机技术与发展, 2020, 30(3): 19–23. doi: 10.3969/j.issn.1673-629X.2020.03.004
JIA Penghui, LIU Xinyi, KONG Yabin, et al. A dynamically generated experts-based collaborative filtering recommendation algorithm[J]. Computer Technology and Development, 2020, 30(3): 19–23. doi: 10.3969/j.issn.1673-629X.2020.03.004
|
[16] |
高发展, 黄梦醒, 张婷婷. 综合用户特征及专家信任的协作过滤推荐算法[J]. 计算机科学, 2017, 44(2): 103–106. doi: 10.11896/j.issn.1002-137X.2017.02.014
GAO Fazhan, HUANG Mengxing, and ZHANG Tingting. Collaborative filtering recommendation algorithm based on user characteristics and expert opinions[J]. Computer Science, 2017, 44(2): 103–106. doi: 10.11896/j.issn.1002-137X.2017.02.014
|
[17] |
赵明, 闫寒, 曹高峰, 等. 融合用户信任度和相似度的基于核心用户抽取的鲁棒性推荐算法[J]. 电子与信息学报, 2019, 41(1): 180–186. doi: 10.11999/JEIT180142
ZHAO Ming, YAN Han, CAO Gaofeng, et al. Robust recommendation algorithm based on core user extraction with user trust and similarity[J]. Journal of Electronics &Information Technology, 2019, 41(1): 180–186. doi: 10.11999/JEIT180142
|
[18] |
王建芳, 刘冉东, 刘永利. 一种带偏置的专家信任推荐算法[J]. 小型微型计算机系统, 2018, 39(2): 287–291. doi: 10.3969/j.issn.1000-1220.2018.02.019
WANG Jianfang, LIU Randong, and LIU Yongli. Expert trust recommendation algorithm with bias[J]. Journal of Chinese Computer Systems, 2018, 39(2): 287–291. doi: 10.3969/j.issn.1000-1220.2018.02.019
|
[19] |
WALTMAN L and VAN ECK N J. A smart local moving algorithm for large-scale modularity-based community detection[J]. The European Physical Journal B, 2013, 86(11): 471. doi: 10.1140/epjb/e2013-40829-0
|
[20] |
GUO Guibing, ZHANG Jie, and THALMANN D. Merging trust in collaborative filtering to alleviate data sparsity and cold start[J]. Knowledge-Based Systems, 2014, 57: 57–68. doi: 10.1016/j.knosys.2013.12.007
|
[21] |
LATHIA N, HAILES S, and CAPRA L. Trust-based Collaborative Filtering[M]. KARABULUT Y, MITCHELL J, HERRMANN P, et al. Trust Management II. Boston: Springer, 2008: 119–134.
|
[22] |
SHEUGH L and ALIZADEH S H. A novel 2D-Graph clustering method based on trust and similarity measures to enhance accuracy and coverage in recommender systems[J]. Information Sciences, 2018, 432: 210–230. doi: 10.1016/j.ins.2017.12.007
|
[23] |
刘国丽, 白晓霞, 廉孟杰, 等. 基于专家信任的协同过滤推荐算法改进研究[J]. 计算机工程与科学, 2019, 41(10): 1846–1853. doi: 10.3969/j.issn.1007-130X.2019.10.018
LIU Guoli, BAI Xiaoxia, LIAN Mengjie, et al. An improved collaborative filtering recommendation algorithm based on expert trust[J]. Computer Engineering &Science, 2019, 41(10): 1846–1853. doi: 10.3969/j.issn.1007-130X.2019.10.018
|
[24] |
NIKZAD–KHASMAKHI N, BALAFAR M A, and FEIZI-DERAKHSHI M R. The state-of-the-art in expert recommendation systems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 126–147. doi: 10.1016/j.engappai.2019.03.020
|
[25] |
GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12): 61–70. doi: 10.1145/138859.138867
|
[26] |
DESHPANDE M and KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143–177. doi: 10.1145/963770.963776
|