Citation: | Yihan XIAO, Liang WANG, Yuxia GUO. Radar Signal Modulation Type Recognition Based on Denoising Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2300-2307. doi: 10.11999/JEIT200506 |
[1] |
陈涛, 柳立志, 郭立民. 基于MWC压缩采样宽带接收机的雷达信号脉内调制识别[J]. 电子与信息学报, 2018, 40(4): 867–874. doi: 10.11999/JEIT170612
CHEN Tao, LIU Lizhi, and GUO Limin. Intra-pulse modulation recognition of radar signals based on MWC compressed sampling wideband receiver[J]. Journal of Electronics &Information Technology, 2018, 40(4): 867–874. doi: 10.11999/JEIT170612
|
[2] |
TÜMEN V, SÖYLEMEZ Ö F, and ERGEN B. Facial emotion recognition on a dataset using convolutional neural network[C]. 2017 International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, 2017: 1–5. doi: 10.1109/IDAP.2017.8090281.
|
[3] |
ZHANG Ming, DIAO Ming, and GUO Limin. Convolutional neural networks for automatic cognitive radio waveform recognition[J] IEEE Access, 2017, 5: 11074–11082. doi: 10.1109/access.2017.2716191.
|
[4] |
郭立民, 陈鑫, 陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报: 工学版, 2019, 49(3): 1000–1008. doi: 10.13229/j.cnki.jdxbgxb20171056
GUO Limin, CHEN Xin, and CHEN Tao. Radar signal modulation type recognition based on AlexNet model[J]. Journal of Jilin University:Engineering and Technology Edition, 2019, 49(3): 1000–1008. doi: 10.13229/j.cnki.jdxbgxb20171056
|
[5] |
QIN Xin, ZHA Xiong, HUANG Jie, et al. Radar waveform recognition based on deep residual network[C]. The 8th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019: 892–896. doi: 10.1109/ITAIC.2019.8785588.
|
[6] |
郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse Auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
|
[7] |
GUO Qiang, YU Xin, and RUAN Guoqing. LPI radar waveform recognition based on deep convolutional neural network transfer learning[J]. Symmetry, 2019, 11(4): 540. doi: 10.3390/sym11040540
|
[8] |
XIAO Yihan, LIU Wenjian, and GAO Lipeng. Radar signal recognition based on transfer learning and feature fusion[J]. Mobile Networks and Applications, 2020, 25(4): 1563–1571. doi: 10.1007/s11036-019-01360-1
|
[9] |
ZHANG Ming, DIAO Ming, GAO Lipeng, et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9(5): 75. doi: 10.3390/sym9050075
|
[10] |
QU Zhiyu, MAO Xiaojie, and DENG Zhian. Radar signal intra-pulse modulation recognition based on convolutional neural network[J] IEEE Access, 2018, 6: 43874–43884. doi: 10.1109/access.2018.2864347.
|
[11] |
LIU Yabo and LIU Yi. Modulation recognition with pre-denoising convolutional neural network[J]. Electronics Letters, 2020, 56(5): 255–257. doi: 10.1049/el.2019.3586
|
[12] |
WU Yushuang, LI Xiukun, and WANG Yang. Extraction and classification of acoustic scattering from underwater target based on Wigner-Ville distribution[J]. Applied Acoustics, 2018, 138: 52–59. doi: 10.1016/j.apacoust.2018.03.026
|
[13] |
TIAN Xiaodi, SUN Xiaodong, YU Xiaohui, et al. Modulation pattern recognition of communication signals based on fractional low-order Choi-Williams distribution and convolutional neural network in impulsive noise environment[C]. The 19th IEEE International Conference on Communication Technology, Xi’an, China, 2019: 188–192. doi: 10.1109/ICCT46805.2019.8947208.
|
[14] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
|
[15] |
邓祾. 基于DnCNN函数的分水岭算法[J]. 海南热带海洋学院学报, 2019, 26(5): 69–75. doi: 10.13307/j.issn.2096-3122.2019.05.12
DENG Ling. Watershed algorithm based on DnCNN function[J]. Journal of Hainan Tropical Ocean University, 2019, 26(5): 69–75. doi: 10.13307/j.issn.2096-3122.2019.05.12
|
[16] |
LENZ B, HASSELBRUCH H, GROßMANN H, et al. Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C: H: W coatings[J]. Surface and Coatings Technology, 2020, 393: 125764. doi: 10.1016/j.surfcoat.2020.125764
|
[17] |
EMARA T, AFIFY H M, ISMAIL F H, et al. A modified inception-v4 for imbalanced skin cancer classification dataset[C]. The 14th International Conference on Computer Engineering and Systems, Cairo, Egypt, 2019: 28–33. doi: 10.1109/ICCES48960.2019.9068110.
|
[18] |
JOSHI K, YADAV R, and ALLWADHI S. PSNR and MSE based investigation of LSB[C]. 2016 International Conference on Computational Techniques in Information and Communication Technologies, New Delhi, India, 2016: 280–285. doi: 10.1109/ICCTICT.2016.7514593.
|