Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Yihan XIAO, Liang WANG, Yuxia GUO. Radar Signal Modulation Type Recognition Based on Denoising Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2300-2307. doi: 10.11999/JEIT200506
Citation: Yihan XIAO, Liang WANG, Yuxia GUO. Radar Signal Modulation Type Recognition Based on Denoising Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2300-2307. doi: 10.11999/JEIT200506

Radar Signal Modulation Type Recognition Based on Denoising Convolutional Neural Network

doi: 10.11999/JEIT200506
Funds:  The National Natural Science Foundation of China (61571146), The Basic Scientific Research business Fees of the Central University (3072020CF0810), The Aviation Science Foundation (201801P6004)
  • Received Date: 2020-06-19
  • Rev Recd Date: 2021-04-10
  • Available Online: 2021-05-06
  • Publish Date: 2021-08-10
  • Considering the problems of Low Probability of Intercept (LPI) radar signal processing complexity and low recognition rate under the condition of low SNR, a signal classification and recognition system based on Denoising Convolution Neural Network (DnCNN) and Inception network is proposed. Firstly, eight kinds of LPI radar signals are transformed by Choi Williams Distribution (CWD) to obtain two-dimensional time-frequency images. Then, the denoising convolution neural network is used to denoise the time-frequency images. Finally, the images are sent to the Inception-v4 network for feature extraction, and the softmax classifier is used for classification to realize the effective classification and recognition of LPI radar signals. Simulation results show that the recognition rate of this method can still reach more than 90% under –10 dB Signal-Noise Ratio (SNR).
  • loading
  • [1]
    陈涛, 柳立志, 郭立民. 基于MWC压缩采样宽带接收机的雷达信号脉内调制识别[J]. 电子与信息学报, 2018, 40(4): 867–874. doi: 10.11999/JEIT170612

    CHEN Tao, LIU Lizhi, and GUO Limin. Intra-pulse modulation recognition of radar signals based on MWC compressed sampling wideband receiver[J]. Journal of Electronics &Information Technology, 2018, 40(4): 867–874. doi: 10.11999/JEIT170612
    [2]
    TÜMEN V, SÖYLEMEZ Ö F, and ERGEN B. Facial emotion recognition on a dataset using convolutional neural network[C]. 2017 International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, 2017: 1–5. doi: 10.1109/IDAP.2017.8090281.
    [3]
    ZHANG Ming, DIAO Ming, and GUO Limin. Convolutional neural networks for automatic cognitive radio waveform recognition[J] IEEE Access, 2017, 5: 11074–11082. doi: 10.1109/access.2017.2716191.
    [4]
    郭立民, 陈鑫, 陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报: 工学版, 2019, 49(3): 1000–1008. doi: 10.13229/j.cnki.jdxbgxb20171056

    GUO Limin, CHEN Xin, and CHEN Tao. Radar signal modulation type recognition based on AlexNet model[J]. Journal of Jilin University:Engineering and Technology Edition, 2019, 49(3): 1000–1008. doi: 10.13229/j.cnki.jdxbgxb20171056
    [5]
    QIN Xin, ZHA Xiong, HUANG Jie, et al. Radar waveform recognition based on deep residual network[C]. The 8th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019: 892–896. doi: 10.1109/ITAIC.2019.8785588.
    [6]
    郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588

    GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse Auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
    [7]
    GUO Qiang, YU Xin, and RUAN Guoqing. LPI radar waveform recognition based on deep convolutional neural network transfer learning[J]. Symmetry, 2019, 11(4): 540. doi: 10.3390/sym11040540
    [8]
    XIAO Yihan, LIU Wenjian, and GAO Lipeng. Radar signal recognition based on transfer learning and feature fusion[J]. Mobile Networks and Applications, 2020, 25(4): 1563–1571. doi: 10.1007/s11036-019-01360-1
    [9]
    ZHANG Ming, DIAO Ming, GAO Lipeng, et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9(5): 75. doi: 10.3390/sym9050075
    [10]
    QU Zhiyu, MAO Xiaojie, and DENG Zhian. Radar signal intra-pulse modulation recognition based on convolutional neural network[J] IEEE Access, 2018, 6: 43874–43884. doi: 10.1109/access.2018.2864347.
    [11]
    LIU Yabo and LIU Yi. Modulation recognition with pre-denoising convolutional neural network[J]. Electronics Letters, 2020, 56(5): 255–257. doi: 10.1049/el.2019.3586
    [12]
    WU Yushuang, LI Xiukun, and WANG Yang. Extraction and classification of acoustic scattering from underwater target based on Wigner-Ville distribution[J]. Applied Acoustics, 2018, 138: 52–59. doi: 10.1016/j.apacoust.2018.03.026
    [13]
    TIAN Xiaodi, SUN Xiaodong, YU Xiaohui, et al. Modulation pattern recognition of communication signals based on fractional low-order Choi-Williams distribution and convolutional neural network in impulsive noise environment[C]. The 19th IEEE International Conference on Communication Technology, Xi’an, China, 2019: 188–192. doi: 10.1109/ICCT46805.2019.8947208.
    [14]
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    [15]
    邓祾. 基于DnCNN函数的分水岭算法[J]. 海南热带海洋学院学报, 2019, 26(5): 69–75. doi: 10.13307/j.issn.2096-3122.2019.05.12

    DENG Ling. Watershed algorithm based on DnCNN function[J]. Journal of Hainan Tropical Ocean University, 2019, 26(5): 69–75. doi: 10.13307/j.issn.2096-3122.2019.05.12
    [16]
    LENZ B, HASSELBRUCH H, GROßMANN H, et al. Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C: H: W coatings[J]. Surface and Coatings Technology, 2020, 393: 125764. doi: 10.1016/j.surfcoat.2020.125764
    [17]
    EMARA T, AFIFY H M, ISMAIL F H, et al. A modified inception-v4 for imbalanced skin cancer classification dataset[C]. The 14th International Conference on Computer Engineering and Systems, Cairo, Egypt, 2019: 28–33. doi: 10.1109/ICCES48960.2019.9068110.
    [18]
    JOSHI K, YADAV R, and ALLWADHI S. PSNR and MSE based investigation of LSB[C]. 2016 International Conference on Computational Techniques in Information and Communication Technologies, New Delhi, India, 2016: 280–285. doi: 10.1109/ICCTICT.2016.7514593.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1553) PDF downloads(204) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return