| Citation: | Mingjiu LÜ, Wenfeng CHEN, Fang XU, Xin ZHAO, Jun YANG. One Dimensional High Resolution Range Imaging Method of Stepped Frequency ISAR Based on Atomic Norm Minimization[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2267-2275. doi: 10.11999/JEIT200501 | 
 
	                | [1] | WANG Lei, HUANG Tianyao, and LIU Yimin. Phase compensation and image autofocusing for randomized stepped frequency ISAR[J]. IEEE Sensors Journal, 2019, 19(10): 3784–3796. doi:  10.1109/JSEN.2019.2897014 | 
| [2] | 陈怡君, 李开明, 张群, 等. 稀疏线性调频步进信号ISAR成像观测矩阵自适应优化方法[J]. 电子与信息学报, 2018, 40(3): 509–516. doi:  10.11999/JEIT170554 CHEN Yijun, LI Kaiming, ZHANG Qun, et al. Adaptive measurement matrix optimization for ISAR imaging with sparse frequency-stepped chirp signals[J]. Journal of Electronics &Information Technology, 2018, 40(3): 509–516. doi:  10.11999/JEIT170554 | 
| [3] | 龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8(6): 782–792. doi:  10.12000/JR19076 LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi:  10.12000/JR19076 | 
| [4] | GHAFARI M, SABAHI M F, and ZHANG Zhenkai. Difference set coding in stepped frequency radar[C]. 6th Iranian Conference on Radar and Surveillance Systems, Isfahan, Iran, 2019: 1–6. doi:  10.1109/ICRSS48293.2019.9026562. | 
| [5] | WEI Shaopeng, ZHANG Lei, MA Hui, et al. Sparse frequency waveform optimization for high-resolution ISAR Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 546–566. doi:  10.1109/TGRS.2019.2937965 | 
| [6] | GANGULY S, GHOSH I, RANJAN R, et al. Compressive sensing based off-grid DOA estimation using OMP algorithm[C]. The 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019. doi:  10.1109/SPIN.2019.8711677. | 
| [7] | HU Lei, SHI Zhiguang, ZHOU Jianxiong, et al. Compressed sensing of complex sinusoids: An approach based on dictionary refinement[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3809–3822. doi:  10.1109/TSP.2012.2193392 | 
| [8] | 王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi:  10.11999/JEIT180145 WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi:  10.11999/JEIT180145 | 
| [9] | EKANADHAM C, TRANCHINA D, and SIMONCELLI E P. Recovery of sparse translation-invariant signals with continuous basis pursuit[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4735–4744. doi:  10.1109/TSP.2011.2160058 | 
| [10] | HUANG Limei, ZONG Zhulin, HUANG Libing, et al. Off-grid sparse stepped-frequency SAR imaging with adaptive basis[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2925–2928. doi:  10.1109/IGARSS.2019.8898543. | 
| [11] | YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi:  10.1109/TSP.2012.2222378 | 
| [12] | TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi:  10.1109/TIT.2013.2277451 | 
| [13] | YANG Zai and XIE Lihua. Continuous compressed sensing with a single or multiple measurement vectors[C]. 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, 2014: 288–291. doi:  10.1109/SSP.2014.6884632. | 
| [14] | CHANDRASEKARAN V, RECHT B, PARRILO P A, et al. The convex algebraic geometry of linear inverse problems[C]. The 48th Annual Allerton Conference on Communication, Control, and Computing, Allerton, USA, 2010: 699–703. doi:  10.1109/ALLERTON.2010.5706975. | 
| [15] | 吕明久, 陈文峰, 夏塞强, 等. 基于联合块稀疏模型的随机调频步进ISAR成像方法[J]. 电子与信息学报, 2018, 40(11): 2614–2620. doi:  10.11999/JEIT180054 LÜ Mingjiu, CHEN Wenfeng, XIA Saiqiang, et al. Random chirp frequency-stepped signal ISAR imaging algorithm based on joint block-sparse model[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2614–2620. doi:  10.11999/JEIT180054 | 
| [16] | BHASKAR B N, TANG Gongguo, and RECHT B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987–5999. doi:  10.1109/TSP.2013.2273443 | 
| [17] | HANSEN T L and JENSEN T L. A fast interior-point method for atomic norm soft thresholding[J]. Signal Processing, 2019, 165: 7–19. doi:  10.1016/j.sigpro.2019.06.023 | 
| [18] | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi:  10.1561/2200000016 | 
| [19] | GEORGIOU T T. The Carathéodory-Fejér-Pisarenko decomposition and its multivariable counterpart[J]. IEEE Transactions on Automatic Control, 2007, 52(2): 212–228. doi:  10.1109/TAC.2006.890479 | 
| [20] | YANG Zai and XIE Lihua. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi:  10.1109/tsp.2015.2420541 | 
| [21] | ZHANG Zhe, WANG Yue, and TIAN Zhi. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95–106. doi:  10.1016/j.sigpro.2019.04.024 | 
| [22] | LI Yinchuan, WANG Xiaodong, and DING Zegang. Multi-dimensional spectral super-resolution with prior knowledge via frequency-selective Vandermonde decomposition and ADMM[EB/OL]. https://arxiv.org/abs/1906.00278, 2019. | 
