Citation: | Mingjiu LÜ, Wenfeng CHEN, Fang XU, Xin ZHAO, Jun YANG. One Dimensional High Resolution Range Imaging Method of Stepped Frequency ISAR Based on Atomic Norm Minimization[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2267-2275. doi: 10.11999/JEIT200501 |
[1] |
WANG Lei, HUANG Tianyao, and LIU Yimin. Phase compensation and image autofocusing for randomized stepped frequency ISAR[J]. IEEE Sensors Journal, 2019, 19(10): 3784–3796. doi: 10.1109/JSEN.2019.2897014
|
[2] |
陈怡君, 李开明, 张群, 等. 稀疏线性调频步进信号ISAR成像观测矩阵自适应优化方法[J]. 电子与信息学报, 2018, 40(3): 509–516. doi: 10.11999/JEIT170554
CHEN Yijun, LI Kaiming, ZHANG Qun, et al. Adaptive measurement matrix optimization for ISAR imaging with sparse frequency-stepped chirp signals[J]. Journal of Electronics &Information Technology, 2018, 40(3): 509–516. doi: 10.11999/JEIT170554
|
[3] |
龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8(6): 782–792. doi: 10.12000/JR19076
LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076
|
[4] |
GHAFARI M, SABAHI M F, and ZHANG Zhenkai. Difference set coding in stepped frequency radar[C]. 6th Iranian Conference on Radar and Surveillance Systems, Isfahan, Iran, 2019: 1–6. doi: 10.1109/ICRSS48293.2019.9026562.
|
[5] |
WEI Shaopeng, ZHANG Lei, MA Hui, et al. Sparse frequency waveform optimization for high-resolution ISAR Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 546–566. doi: 10.1109/TGRS.2019.2937965
|
[6] |
GANGULY S, GHOSH I, RANJAN R, et al. Compressive sensing based off-grid DOA estimation using OMP algorithm[C]. The 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019. doi: 10.1109/SPIN.2019.8711677.
|
[7] |
HU Lei, SHI Zhiguang, ZHOU Jianxiong, et al. Compressed sensing of complex sinusoids: An approach based on dictionary refinement[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3809–3822. doi: 10.1109/TSP.2012.2193392
|
[8] |
王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
|
[9] |
EKANADHAM C, TRANCHINA D, and SIMONCELLI E P. Recovery of sparse translation-invariant signals with continuous basis pursuit[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4735–4744. doi: 10.1109/TSP.2011.2160058
|
[10] |
HUANG Limei, ZONG Zhulin, HUANG Libing, et al. Off-grid sparse stepped-frequency SAR imaging with adaptive basis[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2925–2928. doi: 10.1109/IGARSS.2019.8898543.
|
[11] |
YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
|
[12] |
TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451
|
[13] |
YANG Zai and XIE Lihua. Continuous compressed sensing with a single or multiple measurement vectors[C]. 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, 2014: 288–291. doi: 10.1109/SSP.2014.6884632.
|
[14] |
CHANDRASEKARAN V, RECHT B, PARRILO P A, et al. The convex algebraic geometry of linear inverse problems[C]. The 48th Annual Allerton Conference on Communication, Control, and Computing, Allerton, USA, 2010: 699–703. doi: 10.1109/ALLERTON.2010.5706975.
|
[15] |
吕明久, 陈文峰, 夏塞强, 等. 基于联合块稀疏模型的随机调频步进ISAR成像方法[J]. 电子与信息学报, 2018, 40(11): 2614–2620. doi: 10.11999/JEIT180054
LÜ Mingjiu, CHEN Wenfeng, XIA Saiqiang, et al. Random chirp frequency-stepped signal ISAR imaging algorithm based on joint block-sparse model[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2614–2620. doi: 10.11999/JEIT180054
|
[16] |
BHASKAR B N, TANG Gongguo, and RECHT B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987–5999. doi: 10.1109/TSP.2013.2273443
|
[17] |
HANSEN T L and JENSEN T L. A fast interior-point method for atomic norm soft thresholding[J]. Signal Processing, 2019, 165: 7–19. doi: 10.1016/j.sigpro.2019.06.023
|
[18] |
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
|
[19] |
GEORGIOU T T. The Carathéodory-Fejér-Pisarenko decomposition and its multivariable counterpart[J]. IEEE Transactions on Automatic Control, 2007, 52(2): 212–228. doi: 10.1109/TAC.2006.890479
|
[20] |
YANG Zai and XIE Lihua. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/tsp.2015.2420541
|
[21] |
ZHANG Zhe, WANG Yue, and TIAN Zhi. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95–106. doi: 10.1016/j.sigpro.2019.04.024
|
[22] |
LI Yinchuan, WANG Xiaodong, and DING Zegang. Multi-dimensional spectral super-resolution with prior knowledge via frequency-selective Vandermonde decomposition and ADMM[EB/OL]. https://arxiv.org/abs/1906.00278, 2019.
|