Citation: | Zhaowei ZHANG, Tianzi GUO, Mingyu GAO, Zhiwei HE, Zhekang DONG. Review of SoC Estimation Methods for Electric Vehicle Li-ion Batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803-1815. doi: 10.11999/JEIT200487 |
[1] |
CHEN Lin, WANG Zhengzheng, LV Zhiqiang, et al. A novel state-of-charge estimation method of lithium-ion batteries combining the grey model and genetic algorithms[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8797–8807. doi: 10.1109/TPEL.2017.2782721
|
[2] |
TIAN Yong, LAI Rucong, LI Xiaoyu, et al. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789. doi: 10.1016/j.apenergy.2020.114789
|
[3] |
JIN Long, LI Shuai, and HU Bin. RNN models for dynamic matrix inversion: A control-theoretical perspective[J]. IEEE Transactions on Industrial Informatics, 2018, 14(1): 189–199. doi: 10.1109/TII.2017.2717079
|
[4] |
XIONG Rui, CAO Jiayi, YU Quanqing, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2018, 6: 1832–1843. doi: 10.1109/ACCESS.2017.2780258
|
[5] |
ALI M U, ZAFAR A N, NENGROO S H, et al. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation[J]. Energies, 2019, 12(3): 446. doi: 10.3390/en12030446
|
[6] |
SHEN Ping, OUYANG Minggao, HAN Xuebing, et al. Error analysis of the model-based state-of-charge observer for lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8055–8064. doi: 10.1109/TVT.2018.2842820
|
[7] |
MOUSSALLI Z, SEDRA M B, and LAACHIR A A. State of charge estimation algorithms in lithium-ion battery-powered electric vehicles[C]. 2018 International Conference on Electronics, Control, Optimization and Computer Science, Kenitra, Morocco, 2018: 1–6.
|
[8] |
JULIEN C, MAUGER A, VIJH A, et al. Lithium Batteries: Science and Technology[M]. Switzerland: Springer, 2016: 29–34.
|
[9] |
YONG Jiaying, RAMACHANDARAMURTHY V K, TAN Kangmiao, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 365–385. doi: 10.1016/j.rser.2015.04.130
|
[10] |
PATTIPATI B, SANKAVARAM C, and PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
|
[11] |
LI Jianhua and LIU Mingsheng. State-of-charge estimation of batteries based on open-circuit voltage and time series neural network[C]. The 2019 6th International Conference on Systems and Informatics, Shanghai, China, 2019. doi: 10.1109/ICSAI48974.2019.9010535.
|
[12] |
WU S L, CHEN H C, TSAI M Y, et al. AC impedance based online state-of-charge estimation for li-ion battery[C]. 2017 International Conference on Information, Communication and Engineering, Xiamen, China, 2017: 53–56. doi: 10.1109/ICICE.2017.8479183.
|
[13] |
SHEN Ping, OUYANG Minggao, LU Languang, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 92–103. doi: 10.1109/TVT.2017.2751613
|
[14] |
BARAI A, WIDANAGE W D, MARCO J, et al. A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells[J]. Journal of Power Sources, 2015, 295: 99–107. doi: 10.1016/j.jpowsour.2015.06.140
|
[15] |
YANG Fangfang, SONG Xiangbao, XU Fan, et al. State-of-charge estimation of lithium-ion batteries via long short-term memory network[J]. IEEE Access, 2019, 7: 53792–53799. doi: 10.1109/ACCESS.2019.2912803
|
[16] |
TRUCHOT C, DUBARRY M, and LIAW B Y. State-of-charge estimation and uncertainty for lithium-ion battery strings[J]. Applied Energy, 2014, 119: 218–227. doi: 10.1016/j.apenergy.2013.12.046
|
[17] |
LASHWAY C R and MOHAMMED O A. Adaptive battery management and parameter estimation through physics-based modeling and experimental verification[J]. IEEE Transactions on Transportation Electrification, 2016, 2(4): 454–464. doi: 10.1109/TTE.2016.2558843
|
[18] |
NG K S, MOO C S, CHEN Y P, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9): 1506–1511. doi: 10.1016/j.apenergy.2008.11.021
|
[19] |
ZHENG Yuejiu, OUYANG Minggao, HAN Xuebing, et al. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2018, 377: 161–188. doi: 10.1016/j.jpowsour.2017.11.094
|
[20] |
FULLER T F, DOYLE M, and NEWMAN J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1): 1–10. doi: 10.1149/1.2054684
|
[21] |
LOTFI N, LANDERS R G, LI Jie, et al. Reduced-order electrochemical model-based SOC observer with output model uncertainty estimation[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1217–1230. doi: 10.1109/TCST.2016.2598764
|
[22] |
LIU Guangming, LU Languang, FU Hong, et al. A comparative study of equivalent circuit models and enhanced equivalent circuit models of lithium-ion batteries with different model structures[C]. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific, Beijing, China, 2014: 1–6. doi: 10.1109/ITEC-AP.2014.6940946.
|
[23] |
LUO Yifeng, GONG C S A, CHANG Longxi, et al. AC impedance technique for dynamic and static state of charge analysis for Li-ion battery[C]. 2013 IEEE International Symposium on Consumer Electronics, Hsinchu, China, 2013: 9–10. doi: 10.1109/ISCE.2013.6570268.
|
[24] |
EDDAHECH A, BRIAT O, BERTRAND N, et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks[J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1): 487–494. doi: 10.1016/j.ijepes.2012.04.050
|
[25] |
Wang Qiankun, HE Yijun, SHEN Jiani, et al. State of charge-dependent polynomial equivalent circuit modeling for electrochemical impedance spectroscopy of lithium-ion batteries[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8449–8460. doi: 10.1109/TPEL.2017.2780184
|
[26] |
HE Hongwen, XIONG Rui, GUO Hongqiang, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles[J]. Energy Conversion and Management, 2012, 64: 113–121. doi: 10.1016/j.enconman.2012.04.014
|
[27] |
LAI Xin, ZHENG Yuejiu, and SUN Tao. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566–577. doi: 10.1016/j.electacta.2017.10.153
|
[28] |
NEMES R, CIORNEI S, RUBA M, et al. Modeling and simulation of first-order Li-Ion battery cell with experimental validation[C]. The 2019 8th International Conference on Modern Power Systems, Cluj Napoca, Romania, 2019. doi: 10.1109/MPS.2019.8759769.
|
[29] |
HE Hongwen, XIONG Rui, ZHANG Xiaowei, et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1461–1469. doi: 10.1109/TVT.2011.2132812
|
[30] |
ZHANG Xi, LU Jinling, YUAN Shifei, et al. A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties[J]. Journal of Power Sources, 2017, 345: 21–29. doi: 10.1016/j.jpowsour.2017.01.126
|
[31] |
HE Hongwen, XIONG Rui, and FAN Jinxin. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582–598. doi: 10.3390/en4040582
|
[32] |
LIU Xiangyong, LI Wanli, and ZHOU Aiguo. PNGV equivalent circuit model and SOC estimation algorithm for lithium battery pack adopted in AGV vehicle[J]. IEEE Access, 2018, 6: 23639–23647. doi: 10.1109/ACCESS.2018.2812421
|
[33] |
ZOU Changfu, HU Xiaosong, DEY S, et al. Nonlinear fractional-order estimator with guaranteed robustness and stability for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5951–5961. doi: 10.1109/TIE.2017.2782691
|
[34] |
YU Quanqing, XIONG Rui, and LIN Cheng. Online estimation of state-of-charge based on the H infinity and unscented Kalman filters for lithium ion batteries[J]. Energy Procedia, 2017, 105: 2791–2796. doi: 10.1016/j.egypro.2017.03.600
|
[35] |
NEJAD S, GLADWIN D T, and STONE D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states[J]. Journal of Power Sources, 2016, 316: 183–196. doi: 10.1016/j.jpowsour.2016.03.042
|
[36] |
HE Hongwen, XIONG Rui, and PENG Jiankun. Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform[J]. Applied Energy, 2016, 162: 1410–1418. doi: 10.1016/j.apenergy.2015.01.120
|
[37] |
PAN Haihong, LV Zhiqiang, LIN Weilong, et al. State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model[J]. Energy, 2017, 138: 764–775. doi: 10.1016/j.energy.2017.07.099
|
[38] |
DONG Guangzhong, WEI Jingwen, and CHEN Zonghai. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries[J]. Journal of Power Sources, 2016, 328: 615–626. doi: 10.1016/j.jpowsour.2016.08.065
|
[39] |
WANG Yujie, ZHANG Chenbin, and CHEN Zonghai. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J]. Journal of Power Sources, 2015, 279: 306–311. doi: 10.1016/j.jpowsour.2015.01.005
|
[40] |
BARTLETT A, MARCICKI J, ONORI S, et al. Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 384–399. doi: 10.1109/TCST.2015.2446947
|
[41] |
AUNG H and LOW K S. Temperature dependent state-of-charge estimation of lithium ion battery using dual spherical unscented Kalman filter[J]. IET Power Electronics, 2015, 8(10): 2026–2033. doi: 10.1049/iet-pel.2014.0863
|
[42] |
AUNG H, LOW K S, and GOH S T. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4774–4783. doi: 10.1109/TPEL.2014.2361755
|
[43] |
ZHU Qiao, LI Liang, HU Xiaosong, et al. H∞-based nonlinear observer design for state of charge estimation of lithium-ion battery with polynomial parameters[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10853–10865. doi: 10.1109/TVT.2017.2723522
|
[44] |
LIU Congzhi, ZHU Qiao, LI Liang, et al. A state of charge estimation method based on H∞ observer for switched systems of lithium-ion nickel–manganese–cobalt batteries[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8128–8137. doi: 10.1109/TIE.2017.2701766
|
[45] |
TANG Xiaopeng, WANG Yujie, and CHEN Zonghai. A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer[J]. Journal of Power Sources, 2015, 296: 23–29. doi: 10.1016/j.jpowsour.2015.07.028
|
[46] |
XU Jun, MI C C, CAO Binggang, et al. The state of charge estimation of lithium-ion batteries based on a proportional-integral observer[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1614–1621. doi: 10.1109/TVT.2013.2287375
|
[47] |
XIONG Binyu, ZHAO Jiyun, SU Yixin, et al. State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1658–1667. doi: 10.1109/TSTE.2017.2699288
|
[48] |
CHEN Xiaopeng, SHEN Weixiang, DAI Mingxiang, et al. Robust adaptive sliding-mode observer using RBF neural network for lithium-ion battery state of charge estimation in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 1936–1947. doi: 10.1109/TVT.2015.2427659
|
[49] |
WANG Baojin, LIU Zhiyuan, LI S E, et al. State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 3–11. doi: 10.1109/TCST.2016.2557221
|
[50] |
HU Xiaosong, SUN Fengchun, and ZOU Yuan. Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive luenberger observer[J]. Energies, 2010, 3(9): 1586–1603. doi: 10.3390/en3091586
|
[51] |
XING Yinjiao, HE Wei, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113: 106–115. doi: 10.1016/j.apenergy.2013.07.008
|
[52] |
YANG Fangfang, XING Yinjiao, WANG Dong, et al. A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile[J]. Applied Energy, 2016, 164: 387–399. doi: 10.1016/j.apenergy.2015.11.072
|
[53] |
PARK J, KIM G, NA W, et al. Nonlinear observer and simplified equivalent circuit model-based EKF-SoC estimator of a rechargeable LiFePo4 cell[C]. The 2019 10th International Conference on Power Electronics and ECCE Asia, Busan, Korea (South), 2019.
|
[54] |
YAN Wuzhao, ZHANG Bin, ZHAO Guangquan, et al. A battery management system with a lebesgue-sampling-based extended kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227–3236. doi: 10.1109/tie.2018.2842782
|
[55] |
HE Hongwen, QIN Hongzhou, SUN Xiaokun, et al. Comparison study on the battery SOC estimation with EKF and UKF algorithms[J]. Energies, 2013, 6(10): 5088–5100. doi: 10.3390/en6105088
|
[56] |
WANG Weida, WANG Xiantao, XIANG Changle, et al. Unscented kalman filter-based battery SOC estimation and peak power prediction method for power distribution of hybrid electric vehicles[J]. IEEE Access, 2018, 6: 35957–35965. doi: 10.1109/ACCESS.2018.2850743
|
[57] |
EI DIN M S, HUSSEIN A A, and ABDEL-HAFEZ M F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408–417. doi: 10.1109/TTE.2018.2802043
|
[58] |
PENG Simin, CHEN Chong, SHI Hongbing, et al. State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator[J]. IEEE Access, 2017, 5: 13202–13212. doi: 10.1109/ACCESS.2017.2725301
|
[59] |
HE Cheng, LIU Changchun, WU Yang, et al. Estimation for SOC of electric vehical lithium battery based on artificial immune particle filter[C]. The 2018 3rd International Conference on Smart City and Systems Engineering, Xiamen, China, 2018: 675–678. doi: 10.1109/ICSCSE.2018.00145.
|
[60] |
ZHANG Kai, MA Jian, ZHAO Xuan, et al. State of charge estimation for lithium battery based on adaptively weighting cubature particle filter[J]. IEEE Access, 2019, 7: 166657–166666. doi: 10.1109/access.2019.2953478
|
[61] |
HE Yao, LIU Xingtao, ZHANG Chenbin, et al. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries[J]. Applied Energy, 2013, 101: 808–814. doi: 10.1016/j.apenergy.2012.08.031
|
[62] |
SHEN Yanqing. Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries[J]. Energy, 2014, 74: 795–803. doi: 10.1016/j.energy.2014.07.051
|
[63] |
ELSAYED A and GRIMBLE M J. A new approach to H∞ design of optimal digital linear filters[J]. IMA Journal of Mathematical Control and Information, 1989, 6(2): 233–251. doi: 10.1093/imamci/6.2.233
|
[64] |
ZHANG Fei, LIU Guangjun, FANG Lijin, et al. Estimation of battery state of charge with H∞ observer: Applied to a robot for inspecting power transmission lines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1086–1095. doi: 10.1109/TIE.2011.2159691
|
[65] |
CHEN Ning, ZHANG Peng, DAI Jiayang, et al. Estimating the state-of-charge of lithium-ion battery using an h-infinity observer based on electrochemical impedance model[J]. IEEE Access, 2020, 8: 26872–26884. doi: 10.1109/ACCESS.2020.2971002
|
[66] |
CACCIATO M, NOBILE G, SCARCELLA G, et al. Real-time model-based estimation of SOC and SOH for energy storage systems[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 794–803. doi: 10.1109/TPEL.2016.2535321
|
[67] |
WEI Zhongbao, MENG Shujuan, XIONG Binyu, et al. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer[J]. Applied Energy, 2016, 181: 332–341. doi: 10.1016/j.apenergy.2016.08.103
|
[68] |
ZHONG Qishui, ZHONG Fuli, CHENG Jun, et al. State of charge estimation of lithium-ion batteries using fractional order sliding mode observer[J]. ISA Transactions, 2017, 66: 448–459. doi: 10.1016/j.isatra.2016.09.017
|
[69] |
DAI Kangwei, WANG Ju, and HE Hongwen. An improved SOC estimator using time-varying discrete sliding mode observer[J]. IEEE Access, 2019, 7: 115463–115472. doi: 10.1109/ACCESS.2019.2932507
|
[70] |
HOSSAIN LIPU M S, HANNAN M A, HUSSAIN A, et al. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 4225–4234. doi: 10.1109/TIA.2019.2902532
|
[71] |
HU Xiaosong, LI S E, and YANG Yalian. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 140–149. doi: 10.1109/TTE.2015.2512237
|
[72] |
董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868
DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868
|
[73] |
ÁLVAREZ ANTÓN J C, GARCÍA NIETO P J, BLANCO VIEJO C, et al. Support vector machines used to estimate the battery state of charge[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5919–5926. doi: 10.1109/TPEL.2013.2243918
|
[74] |
刘彬, 杨有恒, 赵志彪, 等. 一种基于正则优化的批次继承极限学习机算法[J]. 电子与信息学报, 2020, 42(7): 1734–1742. doi: 10.11999/JEIT190502
LIU Bin, YANG Youheng, ZHAO Zhibiao, et al. A batch inheritance extreme learning machine algorithm based on regular optimization[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1734–1742. doi: 10.11999/JEIT190502
|
[75] |
EDDAHECH A, BRIAT O, and VINASSA J M. Adaptive voltage estimation for EV Li-ion cell based on artificial neural networks state-of-charge meter[C]. 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 2012: 1318–1324. doi: 10.1109/ISIE.2012.6237281.
|
[76] |
ZHOU Fengwu, WANG Lujun, LIN Huiping, et al. High accuracy state-of-charge online estimation of EV/HEV lithium batteries based on adaptive wavelet neural network[C]. 2013 ECCE Asia Downunder, Melbourne, Australia, 2013: 513–517. doi: 10.1109/ECCE-Asia.2013.6579145.
|
[77] |
GAO L, SONG Y, and DOUGAL R A. Wavelet neural network based battery state-of-charge estimation for portable electronics applications[C]. The 20th Annual IEEE Applied Power Electronics Conference and Exposition, Austin, USA, 2005: 998–1002. doi: 10.1109/APEC.2005.1453111.
|
[78] |
TONG Shijie, LACAP J H, and PARK J W. Battery state of charge estimation using a load-classifying neural network[J]. Journal of Energy Storage, 2016, 7: 236–243. doi: 10.1016/j.est.2016.07.002
|
[79] |
KANG Liuwang, ZHAO Xuan, and MA Jian. A new neural network model for the state-of-charge estimation in the battery degradation process[J]. Applied Energy, 2014, 121: 20–27. doi: 10.1016/j.apenergy.2014.01.066
|
[80] |
CUI Deyu, XIA Bizhong, ZHANG Ruifeng, et al. A novel intelligent method for the state of charge estimation of lithium-ion batteries using a discrete wavelet transform-based wavelet neural network[J]. Energies, 2018, 11(4): 995. doi: 10.3390/en11040995
|
[81] |
LIPU M S H, HANNAN M A, HUSSAIN A, et al. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6): 064102. doi: 10.1063/1.5008491
|
[82] |
LIU Yanwei, ZHAO Kegang, HUANG Xiangdong, et al. A new method based on RBFNN in SOC estimation of HEV battery[C]. The 29th Chinese Control Conference, Beijing, China, 2010: 4923–4927.
|
[83] |
ABBAS G, NAWAZ M, and KAMRAN F. Performance comparison of NARX & RNN-LSTM neural networks for LiFePO4 battery state of charge estimation[C]. The 2019 16th International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 2019: 463–468.
|
[84] |
YANG Fangfang, LI Weihua, LI Chuan, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66–75. doi: 10.1016/j.energy.2019.03.059
|
[85] |
HASTIE T, TIBSHIRANI R, and FRIEDMAN J. The Elements of Statistical Learning[M]. New York: Springer, 2009: 745.
|
[86] |
SCHÖLKOPF B and SMOLA A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge: MIT Press, 2001: 187–188.
|
[87] |
LI Ran, XU Shihui, LI Sibo, et al. State of charge prediction algorithm of lithium-ion battery based on PSO-SVR cross validation[J]. IEEE Access, 2020, 8: 10234–10242. doi: 10.1109/ACCESS.2020.2964852
|
[88] |
ZHANG Li, LI Kang, DU Dajun, et al. A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J]. IFAC-PapersOnLine, 2019, 52(11): 256–261. doi: 10.1016/j.ifacol.2019.09.150
|
[89] |
HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126
|
[90] |
DU Jiani, LIU Zhitao, and WANG Youyi. State of charge estimation for Li-ion battery based on model from extreme learning machine[J]. Control Engineering Practice, 2014, 26: 11–19. doi: 10.1016/j.conengprac.2013.12.014
|
[91] |
LIU Shiqi, WANG Junhua, LIU Qisheng, et al. Deep-discharging li-ion battery state of charge estimation using a partial adaptive forgetting factors least square method[J]. IEEE Access, 2019, 7: 47339–47352. doi: 10.1109/ACCESS.2019.2909274
|
[92] |
MENG Jinhao, STROE D I, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717–7727. doi: 10.1109/TIE.2018.2880668
|
[93] |
SHEN Yanqing. A combined state space model with adaptive neural compensator based state of charge determination method for lithium-ion batteries[J]. Electrochimica Acta, 2020, 336: 135664. doi: 10.1016/j.electacta.2020.135664
|
[94] |
OUYANG Quan, CHEN Jian, and ZHENG Jian. State-of-charge observer design for batteries with online model parameter identification: A robust approach[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5820–5831. doi: 10.1109/TPEL.2019.2948253
|
[95] |
AWADALLAH M A and VENKATESH B. Accuracy improvement of SOC estimation in lithium-ion batteries[J]. Journal of Energy Storage, 2016, 6: 95–104. doi: 10.1016/j.est.2016.03.003
|
[96] |
ZAHID T, XU Kun, LI Weimin, et al. State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles[J]. Energy, 2018, 162: 871–882. doi: 10.1016/j.energy.2018.08.071
|
[97] |
SHEN W X, CHAN C C, LO E W, et al. Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2002, 49(3): 677–684. doi: 10.1109/TIE.2002.1005395
|