Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Weikun HE, Fenghua BI, Xiaoliang WANG, Ying ZHANG. Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1954-1961. doi: 10.11999/JEIT200474
Citation: Weikun HE, Fenghua BI, Xiaoliang WANG, Ying ZHANG. Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1954-1961. doi: 10.11999/JEIT200474

Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition

doi: 10.11999/JEIT200474
Funds:  The National Natural Science Foundation of China and the Civil Aviation Administration of China (U1533110), The Special Funding from the Civil Aviation University of China for the Basic Research Business Fee Project of Central Universities (3122018D011), The Natural Science Foundation of Tianjin (19JCQNJC01000)
  • Received Date: 2020-06-12
  • Rev Recd Date: 2020-12-06
  • Available Online: 2020-12-14
  • Publish Date: 2021-07-10
  • In recent years, countries around the world have paid more and more attention to the development of wind power. The existence of wind farms may have a negative impact on the performance of air traffic control surveillance radars. Therefore, the research on the clutter suppression technology of wind farms is of great significance to improve the work performance of air traffic control surveillance radars and ensure the safety of air traffic. When the Morphological Component Analysis(MCA)algorithm is applied to the wind farm clutter suppression based on the difference of sparse characteristics for the signals, the calculation burden is lower and the performance is better. However, the clutter suppression performance of the MCA algorithm is affected when the spectral resolution is reduced due to the short Coherent Processing Interval(CPI)and the signal characteristics are not obvious. Therefore, the sparse reconstruction algorithm and the MCA algorithm are combined to suppress the clutter in the wind farm with a small number of coherent pulses. It is considered that the short CPI received echo data is the default of tail data on the basis of the longer CPI radar echo data, and then the sparse reconstruction algorithm is used to recover the default data, and the MCA algorithm is used to suppress wind farm clutter. The experimental results verify the effectiveness of the proposed method.
  • loading
  • [1]
    付秋顺. 世界风电行业发展状况分析[J]. 科学技术创新, 2012(7): 106. doi: 10.3969/j.issn.1673-1328.2012.07.124

    FU Qiushun. Analysis on the development status of the world wind power industry[J]. Scientific and Technological Innovation, 2012(7): 106. doi: 10.3969/j.issn.1673-1328.2012.07.124
    [2]
    THEIL A, SCHOUTEN M W, and DE JONG A. Radar and wind turbines: A guide to acceptance criteria[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 1355–1361. doi: 10.1109/RADAR.2010.5494405.
    [3]
    中国可再生能源学会风能专业委员会(CWEA). 2018年中国风电吊装容量统计简报[EB/OL]. http://www.nengyuanjie.net/article/25445.html, 2019.

    China Wind Energy Association (CWEA). 2018 China wind power lifting capacity statistics bulletin[EB/OL]. http://www.nengyuanjie.net/article/25445.html, 2019.
    [4]
    KONG Fanxing, ZHANG Yan, and PALMER R. Characterization of micro-Doppler radar signature of commercial wind turbines[C]. SPIE 9077, Radar Sensor Technology XVIII, Baltimore, USA, 2014: 1–8. doi: 10.1117/12.2050029.
    [5]
    KRASNOV O A and YAROVOY A G. Polarimetric micro-Doppler characterization of wind turbines[C].The 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481496.
    [6]
    PIDANIC J, JURYCA K, and SUHARTANTO H. The modelling of wind turbine influence in the primary radar systems[C]. 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia, 2017: 47–52. doi: 10.1109/ICACSIS.2017.8355011.
    [7]
    WANG Jian, LOK Y F, HUBBARD O, et al. Impact of wind turbines on ATC radars and mitigation results[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–4. doi: 10.1109/RADAR.2013.6586095.
    [8]
    何炜琨, 吴仁彪, 王晓亮, 等. 风电场对雷达设备的影响评估与干扰抑制技术研究现状与展望[J]. 电子与信息学报, 2017, 39(7): 1748–1758. doi: 10.11999/JEIT161004

    HE Weikun, WU Renbiao, WANG Xiaoliang, et al. The review and prospect on the influence evaluation and interference suppression of wind farms on the radar equipment[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1748–1758. doi: 10.11999/JEIT161004
    [9]
    THEIL A and VAN EWIJK L J. Radar performance degradation due to the presence of wind turbines[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 75–80. doi: 10.1109/RADAR.2007.374194.
    [10]
    NAQVI A and LING Hao. Signal filtering technique to remove Doppler clutter caused by wind turbines[J]. Microwave and Optical Technology Letters, 2012, 54(6): 1455–1460. doi: 10.1002/mop.26819
    [11]
    曹永贵, 方宇, 吴道庆. 基于OMP算法的风轮机杂波滤除研究[J]. 现代雷达, 2019, 41(5): 16–21. doi: 10.16592/j.cnki.1004-7859.2019.05.004

    CAO Yonggui, FANG Yu, and WU Daoqing. A study on wind turbine clutter mitigation based on OMP algorithm[J]. Modern Radar, 2019, 41(5): 16–21. doi: 10.16592/j.cnki.1004-7859.2019.05.004
    [12]
    KARABAYIR O, UNAL M, COSKUN A F, et al. CLEAN based wind turbine clutter mitigation approach for pulse-Doppler radars[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 1541–1544. doi: 10.1109/RADAR.2015.7131241.
    [13]
    吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923

    WU Renbiao, MAO Jian, WANG Xiaoliang, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics &Information Technology, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923
    [14]
    何炜琨, 窄秋苹, 郭双双, 等. 基于微多普勒特征的风轮机雷达杂波检测[J]. 信号处理, 2017, 33(4): 496–504. doi: 10.16798/j.issn.1003-0530.2017.04.006

    HE Weikun, ZHAI Qiuping, GUO Shuangshuang, et al. Wind turbine radar clutter detection based on micro-Doppler feature[J]. Journal of Signal Processing, 2017, 33(4): 496–504. doi: 10.16798/j.issn.1003-0530.2017.04.006
    [15]
    UYSAL F, SELESNICK I, PILLAI U, et al. Dynamic clutter mitigation using sparse optimization[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 37–49. doi: 10.1109/MAES.2014.130137
    [16]
    夏鹏, 田西兰. 基于形态分量分析的风力发电机杂波抑制方法[J]. 空军预警学院学报, 2017, 31(6): 398–402. doi: 10.3969/j.issn.2095-5839.2017.06.003

    XIA Peng and TIAN Xilan. Wind turbine clutter rejection based on morphological component analysis[J]. Journal of Air Force Early Warning Academy, 2017, 31(6): 398–402. doi: 10.3969/j.issn.2095-5839.2017.06.003
    [17]
    AFONSO M V, BIOUCAS-DIAS J M, and FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345–2356. doi: 10.1109/TIP.2010.2047910
    [18]
    IVAN S. L1-norm penalized least squares with salsa[EB/OL]. https://eeweb.engineering.nyu.edu/iselesni/lecture_notes/SALSA/SALSA.pdf.
    [19]
    BAI Xueru, ZHOU Feng, and HUI Ye. Obtaining JTF-signature of space-debris from incomplete and phase-corrupted data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1169–1180. doi: 10.1109/TAES.2017.2667899
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (907) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return