| Citation: | Gen LI, Yanheng MA, Xuying XIONG. Sparse Autofocus Method for Maneuvering Platform High-squint SAR Based on Two-dimensional Spatial-variant Motion Compensation[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1992-1999. doi: 10.11999/JEIT200456 | 
 
	                | [1] | 李宁, 别博文, 邢孟道, 等. 基于多普勒重采样的恒加速度大斜视SAR成像算法[J]. 电子与信息学报, 2019, 41(12): 2873–2880. doi:  10.11999/JEIT180953 LI Ning, BIE Bowen, XING Mengdao, et al. A doppler resampling based imaging algorithm for high squint SAR with constant acceleration[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2873–2880. doi:  10.11999/JEIT180953 | 
| [2] | HOU Jianqiang, MA Yanheng, and LI Gen. A third-order range separation imaging algorithm for manoeuvring platform SAR[J]. Remote Sensing Letters, 2019, 10(8): 786–795. doi:  10.1080/2150704X.2019.1610982 | 
| [3] | LI Gen, MA Yanheng, SHI Lin, et al. KT and azimuth sub-region deramp-based high-squint SAR imaging algorithm mounted on manoeuvring platforms[J]. IET Radar, Sonar & Navigation, 2020, 14(3): 388–398. doi:  10.1049/iet-rsn.2019.0251 | 
| [4] | 李根, 马彦恒, 侯建强, 等. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法[J]. 电子与信息学报, 2020, 42(10): 2485–2492. doi:  10.11999/JEIT190831 LI Gen, MA Yanheng, HOU Jianqiang, et al. Maneuvering platform high-squint SAR imaging method based on Keystone transform and perturbation resampling[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2485–2492. doi:  10.11999/JEIT190831 | 
| [5] | WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi:  10.1109/7.303752 | 
| [6] | FIENUP J R and MILLER J J. Aberration correction by maximizing generalized sharpness metrics[J]. Journal of the Optical Society of America A, 2003, 20(4): 609–620. doi:  10.1364/JOSAA.20.000609 | 
| [7] | DE MACEDO K A C, SCHEIBER R, and MOREIRA A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151–3162. doi:  10.1109/TGRS.2008.924004 | 
| [8] | LI Yake and O’YOUNG S. Kalman filter disciplined phase gradient autofocus for stripmap SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6298–6308. doi:  10.1109/TGRS.2020.2976655 | 
| [9] | LIANG Yi, LI Guofei, WEN Jun, et al. A fast time-domain SAR imaging and corresponding autofocus method based on hybrid coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8627–8640. doi:  10.1109/TGRS.2019.2921917 | 
| [10] | PU Wei, WU Junjie, HUANG Yulin, et al. Fast factorized backprojection imaging algorithm integrated with motion trajectory estimation for bistatic forward-looking SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10): 3949–3965. doi:  10.1109/JSTARS.2019.2945118 | 
| [11] | YANG Jungang, HUANG Xiaotao, THOMPSON J, et al. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608–4620. doi:  10.1109/TGRS.2013.2283054 | 
| [12] | LI Bo, LIU Falin, ZHOU Chongbin, et al. Phase error correction for approximated observation-based compressed sensing radar imaging[J]. Sensors, 2017, 17(3): 613. doi:  10.3390/s17030613 | 
| [13] | PU Wei, WU Junjie, WANG Xiaodong, et al. Joint sparsity-based imaging and motion error estimation for BFSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1393–1408. doi:  10.1109/TGRS.2018.2866437 | 
| [14] | ONHON N Ö and CETIN M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075–2088. doi:  10.1109/TIP.2011.2179056 | 
| [15] | 李震宇, 梁毅, 邢孟道, 等. 一种大斜视SAR俯冲段频域相位滤波成像算法[J]. 电子学报, 2015, 43(10): 2014–2021. doi:  10.3969/j.issn.0372-2112.2015.10.020 LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for high-squint SAR in diving movement[J]. Acta Electronica Sinica, 2015, 43(10): 2014–2021. doi:  10.3969/j.issn.0372-2112.2015.10.020 | 
| [16] | 别博文, 梁毅, 党彦锋, 等. 曲线轨迹SAR大斜视子孔径成像算法[J]. 系统工程与电子技术, 2017, 39(3): 500–505. doi:  10.3969/j.issn.1001-506X.2017.03.07 BIE Bowen, LIANG Yi, DANG Yanfeng, et al. Sub-aperture imaging algorithm for high squint SAR with curvilinear flight tracks[J]. Systems Engineering and Electronics, 2017, 39(3): 500–505. doi:  10.3969/j.issn.1001-506X.2017.03.07 | 
| [17] | 李根, 马彦恒, 侯建强, 等. 基于子孔径Keystone变换的曲线轨迹大斜视SAR回波模拟[J]. 电子与信息学报, 2020, 42(9): 2261–2268. doi:  10.11999/JEIT190674 LI Gen, MA Yanheng, HOU Jianqiang, et al. Sub-aperture Keystone transform based echo simulation method for high-squint SAR with a curve trajectory[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2261–2268. doi:  10.11999/JEIT190674 | 
