Citation: | Xiaowei DONG, Yue HAN, Zheng ZHANG, Hongbin QU, Guofei GAO, Mingdian CHEN, Bo LI. Metro Pedestrian Detection Algorithm Based on Multi-scale Weighted Feature Fusion Network[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2113-2120. doi: 10.11999/JEIT200450 |
[1] |
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
|
[2] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[3] |
王殿伟, 何衍辉, 李大湘, 等. 改进的YOLOv3红外视频图像行人检测算法[J]. 西安邮电大学学报, 2018, 23(4): 48–52, 67. doi: 10.13682/j.issn.2095-6533.2018.04.008
WANG Dianwei, HE Yanhui, LI Daxiang, et al. An improved infrared video image pedestrian detection algorithm[J]. Journal of Xi’an University of Posts and Telecommunications, 2018, 23(4): 48–52, 67. doi: 10.13682/j.issn.2095-6533.2018.04.008
|
[4] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[J]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2
|
[5] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
[6] |
吕俊奇, 邱卫根, 张立臣, 等. 多层卷积特征融合的行人检测[J]. 计算机工程与设计, 2018, 39(11): 3481–3485. doi: 10.16208/j.issn1000-7024.2018.11.032
LÜ Junqi, QIU Weigen, ZHANG Lichen, et al. Multi-scale convolutional feature fusion for pedestrian detection[J]. Computer Engineering and Design, 2018, 39(11): 3481–3485. doi: 10.16208/j.issn1000-7024.2018.11.032
|
[7] |
张文明, 姚振飞, 高雅昆, 等. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J]. 电子与信息学报, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229
ZHANG Wenming, YAO Zhenfei, GAO Yakun, et al. A deep convolutional network for saliency object detection with balanced accuracy and high efficiency[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229
|
[8] |
刘晴, 唐林波, 赵保军, 等. 基于自适应多特征融合的均值迁移红外目标跟踪[J]. 电子与信息学报, 2012, 34(5): 1137–1141. doi: 10.3724/SP.J.1146.2011.01077
LIU Qing, TANG Linbo, ZHAO Baojun, et al. Infrared target tracking based on adaptive multiple features fusion and mean shift[J]. Journal of Electronics &Information Technology, 2012, 34(5): 1137–1141. doi: 10.3724/SP.J.1146.2011.01077
|
[9] |
颜伟, 耿路, 周雷, 等. 基于海情和三次样条插值算法的舰船雷达散射截面优化分析方法[J]. 电子与信息学报, 2018, 40(3): 579–586. doi: 10.11999/JEIT170562
YAN Wei, GENG Lu, ZHOU Lei, et al. Optimization analysis method on ship RCS based on sea conditions and cubic spline interpolation algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(3): 579–586. doi: 10.11999/JEIT170562
|
[10] |
邓苗, 张基宏, 柳伟, 等. 基于全变分的权值优化的多尺度变换图像融合[J]. 电子与信息学报, 2013, 35(7): 1657–1663. doi: 10.3724/SP.J.1146.2012.01183
DENG Miao, ZHANG Jihong, LIU Wei, et al. A total variation-based lowpass weight function optimization in multiscale image fusion[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1657–1663. doi: 10.3724/SP.J.1146.2012.01183
|
[11] |
李秋华, 李吉成, 沈振康. 基于多尺度特征融合的红外图像小目标检测[J]. 系统工程与电子技术, 2005, 27(9): 1557–1560. doi: 10.3321/j.issn:1001-506X.2005.09.018
LI Qiuhua, LI Jicheng, and SHEN Zhenkang. IR image small target detection based on multi-scale feature fusion[J]. Systems Engineering and Electronics, 2005, 27(9): 1557–1560. doi: 10.3321/j.issn:1001-506X.2005.09.018
|
[12] |
姜文涛, 张驰, 张晟翀, 等. 多尺度特征图融合的目标检测[J]. 中国图象图形学报, 2019, 24(11): 1918–1931. doi: 10.11834/jig.190021
JIANG Wentao, ZHANG Chi, ZHANG Shengchong, et al. Multiscale feature map fusion algorithm for target detection[J]. Journal of Image and Graphics, 2019, 24(11): 1918–1931. doi: 10.11834/jig.190021
|
[13] |
王瑶, 王正勇, 何小海, 等. 基于多尺度训练库与多特征融合的人脸识别[J]. 电视技术, 2015, 39(1): 121–126. doi: 10.16280/j.videoe.2015.01.031
WANG Yao, WANG Zhengyong, HE Xiaohai, et al. Face recognition by features fusion based on multiscale training set[J]. Video Engineering, 2015, 39(1): 121–126. doi: 10.16280/j.videoe.2015.01.031
|
[14] |
余春艳, 徐小丹, 钟诗俊. 面向显著性目标检测的SSD改进模型[J]. 电子与信息学报, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118
YU Chunyan, XU Xiaodan, and ZHONG Shijun. An improved SSD model for saliency object detection[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118
|
[15] |
孙彦景, 石韫开, 云霄, 等. 基于多层卷积特征的自适应决策融合目标跟踪算法[J]. 电子与信息学报, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971
SUN Yanjing, SHI Yunkai, YUN Xiao, et al. Adaptive strategy fusion target tracking based on multi-layer convolutional features[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971
|
[16] |
张思宇, 张轶. 基于多尺度特征融合的小目标行人检测[J]. 计算机工程与科学, 2019, 41(9): 1627–1634. doi: 10.3969/j.issn.1007-130X.2019.09.014
ZHANG Siyu and ZHANG Yi. Small target pedestrian detection based on multi-scale feature fusion[J]. Computer Engineering and Science, 2019, 41(9): 1627–1634. doi: 10.3969/j.issn.1007-130X.2019.09.014
|
[17] |
DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. doi: 10.1109/TPAMI.2011.155
|
[18] |
汪荣贵, 韩梦雅, 杨娟, 等. 多级注意力特征网络的小样本学习[J]. 电子与信息学报, 2020, 42(3): 772–778. doi: 10.11999/JEIT190242
WANG Ronggui, HAN Mengya, YANG Juan, et al. Multi-level attention feature network for few-shot learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 772–778. doi: 10.11999/JEIT190242
|
[19] |
代科学, 李国辉, 涂丹, 等. 监控视频运动目标检测减背景技术的研究现状和展望[J]. 中国图象图形学报, 2007, 11(7): 919–927. doi: 10.3969/j.issn.1006-8961.2006.07.002
DAI Kexue, LI Guohui, TU Dan, et al. Prospects and current studies on background subtraction techniques for moving objects detection from surveillance video[J]. Journal of Image and Graphics, 2007, 11(7): 919–927. doi: 10.3969/j.issn.1006-8961.2006.07.002
|
[20] |
陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法[J]. 电子与信息学报, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
CHEN Yong, LIU Xi, and LIU Huanlin. Occluded pedestrian detection based on joint attention mechanism of channel-wise and spatial information[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
|
[21] |
贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
|