| Citation: | Yi CAO, Chen LIU, Yongjian SHENG, Zilong HUANG, Xiaolong DENG. Action Recognition Model Based on 3D Graph Convolution and Attention Enhanced[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2071-2078. doi: 10.11999/JEIT200448 | 
 
	                | [1] | 周风余, 尹建芹, 杨阳, 等. 基于时序深度置信网络的在线人体动作识别[J]. 自动化学报, 2016, 42(7): 1030–1039. doi:  10.16383/j.aas.2016.c150629 ZHOU Fengyu, YIN Jianqin, YANG Yang, et al. Online recognition of human actions based on temporal deep belief neural network[J]. Acta Automatica Sinica, 2016, 42(7): 1030–1039. doi:  10.16383/j.aas.2016.c150629 | 
| [2] | 刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi:  10.11999/JEIT171116 LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi:  10.11999/JEIT171116 | 
| [3] | 吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904–910. doi:  10.11999/JEIT180477 WU Peiliang, YANG Xiao, MAO Bingyi, et al. A perspective-independent method for behavior recognition in depth video via temporal-spatial correlating[J]. Journal of Electronics &Information Technology, 2019, 41(4): 904–910. doi:  10.11999/JEIT180477 | 
| [4] | HOU Yonghong, LI Zhaoyang, WANG Pichao, et al. Skeleton optical spectra-based action recognition using convolutional neural networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(3): 807–811. doi:  10.1109/TCSVT.2016.2628339 | 
| [5] | LIU Zhi, ZHANG Chenyang, and TIAN Yingli. 3D-based deep convolutional neural network for action recognition with depth sequences[J]. Image and Vision Computing, 2016, 55: 93–100. doi:  10.1016/j.imavis.2016.04.004 | 
| [6] | TU Juanhui, LIU Mengyuan, and LIU Hong. Skeleton-based human action recognition using spatial temporal 3D convolutional neural networks[C]. Proceedings of 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1–6. doi: 10.1109/ICME.2018.8486566. | 
| [7] | YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, USA, 2018: 7444–7452. | 
| [8] | SI Chenyang, CHEN Wentao, WANG Wei, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 1227–1236. doi: 10.1109/CVPR.2019.00132. | 
| [9] | LI Maosen, CHEN Siheng, CHEN Xu, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]. Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 3590–3598. | 
| [10] | KIM T S and REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, USA, 2017: 1623–1631. doi: 10.1109/CVPRW.2017.207. | 
| [11] | JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221–231. doi:  10.1109/TPAMI.2012.59 | 
| [12] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755–780. doi:  10.11897/SP.J.1016.2020.00755 XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755–780. doi:  10.11897/SP.J.1016.2020.00755 | 
| [13] | CAI Yujun, GE Liuhao, LIU Jun, et al. Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2272–2281. doi: 10.1109/ICCV.2019.00236. | 
| [14] | CHO S, MAQBOOL M H, LIU Fei, et al. Self-attention network for skeleton-based human action recognition[C]. Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, USA, 2020: 624–633. doi: 10.1109/WACV45572.2020.9093639. | 
| [15] | SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB+D: A large scale dataset for 3D human activity analysis[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1010–1019. doi: 10.1109/CVPR.2016.115. | 
| [16] | LI Wanqing, ZHANG Zhengyou, and LIU Zicheng. Action recognition based on a bag of 3D points[C]. Proceedings of 2010 Computer Vision and Pattern Recognition-Workshops, San Francisco, USA, 2010: 9–14. doi: 10.1109/CVPRW.2010.5543273. | 
| [17] | 冉宪宇, 刘凯, 李光, 等. 自适应骨骼中心的人体行为识别算法[J]. 中国图象图形学报, 2018, 23(4): 519–525. doi:  10.11834/jig.170420 RAN Xianyu, LIU Kai, LI Guang, et al. Human action recognition algorithm based on adaptive skeleton center[J]. Journal of Image and Graphics, 2018, 23(4): 519–525. doi:  10.11834/jig.170420 | 
| [18] | LIU Hong, TU Juanhui, and LIU Mengyuan. Two-stream 3D convolutional neural network for skeleton-based action recognition[EB/OL]. https://arxiv.org/abs/1705.08106, 2017. | 
| [19] | GAO Xuesong, LI Keqiu, ZHANG Yu, et al. 3D skeleton-based video action recognition by graph convolution network[C]. Proceedings of 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 2019: 500–501. doi: 10.1109/SmartIoT.2019.00093. | 
| [20] | PHAM H H, KHOUDOUR L, CROUZIL A, et al. Skeletal movement to color map: A novel representation for 3D action recognition with inception residual networks[C]. Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 3483–3487. doi: 10.1109/ICIP.2018.8451404. | 
| [21] | BATTISTONE F and PETROSINO A. TGLSTM: A time based graph deep learning approach to gait recognition[J]. Pattern Recognition Letters, 2019, 126: 132–138. doi:  10.1016/j.patrec.2018.05.004 | 
