Citation: | Yi CAO, Chen LIU, Yongjian SHENG, Zilong HUANG, Xiaolong DENG. Action Recognition Model Based on 3D Graph Convolution and Attention Enhanced[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2071-2078. doi: 10.11999/JEIT200448 |
[1] |
周风余, 尹建芹, 杨阳, 等. 基于时序深度置信网络的在线人体动作识别[J]. 自动化学报, 2016, 42(7): 1030–1039. doi: 10.16383/j.aas.2016.c150629
ZHOU Fengyu, YIN Jianqin, YANG Yang, et al. Online recognition of human actions based on temporal deep belief neural network[J]. Acta Automatica Sinica, 2016, 42(7): 1030–1039. doi: 10.16383/j.aas.2016.c150629
|
[2] |
刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
|
[3] |
吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
WU Peiliang, YANG Xiao, MAO Bingyi, et al. A perspective-independent method for behavior recognition in depth video via temporal-spatial correlating[J]. Journal of Electronics &Information Technology, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
|
[4] |
HOU Yonghong, LI Zhaoyang, WANG Pichao, et al. Skeleton optical spectra-based action recognition using convolutional neural networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(3): 807–811. doi: 10.1109/TCSVT.2016.2628339
|
[5] |
LIU Zhi, ZHANG Chenyang, and TIAN Yingli. 3D-based deep convolutional neural network for action recognition with depth sequences[J]. Image and Vision Computing, 2016, 55: 93–100. doi: 10.1016/j.imavis.2016.04.004
|
[6] |
TU Juanhui, LIU Mengyuan, and LIU Hong. Skeleton-based human action recognition using spatial temporal 3D convolutional neural networks[C]. Proceedings of 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1–6. doi: 10.1109/ICME.2018.8486566.
|
[7] |
YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, USA, 2018: 7444–7452.
|
[8] |
SI Chenyang, CHEN Wentao, WANG Wei, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 1227–1236. doi: 10.1109/CVPR.2019.00132.
|
[9] |
LI Maosen, CHEN Siheng, CHEN Xu, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]. Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 3590–3598.
|
[10] |
KIM T S and REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, USA, 2017: 1623–1631. doi: 10.1109/CVPRW.2017.207.
|
[11] |
JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221–231. doi: 10.1109/TPAMI.2012.59
|
[12] |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755–780. doi: 10.11897/SP.J.1016.2020.00755
XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755–780. doi: 10.11897/SP.J.1016.2020.00755
|
[13] |
CAI Yujun, GE Liuhao, LIU Jun, et al. Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2272–2281. doi: 10.1109/ICCV.2019.00236.
|
[14] |
CHO S, MAQBOOL M H, LIU Fei, et al. Self-attention network for skeleton-based human action recognition[C]. Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, USA, 2020: 624–633. doi: 10.1109/WACV45572.2020.9093639.
|
[15] |
SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB+D: A large scale dataset for 3D human activity analysis[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1010–1019. doi: 10.1109/CVPR.2016.115.
|
[16] |
LI Wanqing, ZHANG Zhengyou, and LIU Zicheng. Action recognition based on a bag of 3D points[C]. Proceedings of 2010 Computer Vision and Pattern Recognition-Workshops, San Francisco, USA, 2010: 9–14. doi: 10.1109/CVPRW.2010.5543273.
|
[17] |
冉宪宇, 刘凯, 李光, 等. 自适应骨骼中心的人体行为识别算法[J]. 中国图象图形学报, 2018, 23(4): 519–525. doi: 10.11834/jig.170420
RAN Xianyu, LIU Kai, LI Guang, et al. Human action recognition algorithm based on adaptive skeleton center[J]. Journal of Image and Graphics, 2018, 23(4): 519–525. doi: 10.11834/jig.170420
|
[18] |
LIU Hong, TU Juanhui, and LIU Mengyuan. Two-stream 3D convolutional neural network for skeleton-based action recognition[EB/OL]. https://arxiv.org/abs/1705.08106, 2017.
|
[19] |
GAO Xuesong, LI Keqiu, ZHANG Yu, et al. 3D skeleton-based video action recognition by graph convolution network[C]. Proceedings of 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 2019: 500–501. doi: 10.1109/SmartIoT.2019.00093.
|
[20] |
PHAM H H, KHOUDOUR L, CROUZIL A, et al. Skeletal movement to color map: A novel representation for 3D action recognition with inception residual networks[C]. Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 3483–3487. doi: 10.1109/ICIP.2018.8451404.
|
[21] |
BATTISTONE F and PETROSINO A. TGLSTM: A time based graph deep learning approach to gait recognition[J]. Pattern Recognition Letters, 2019, 126: 132–138. doi: 10.1016/j.patrec.2018.05.004
|