Citation: | Bin DING, Xue XIA, Xuefeng LIANG. Sea Clutter Data Augmentation Method Based on Deep Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1985-1991. doi: 10.11999/JEIT200447 |
[1] |
刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089
LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089
|
[2] |
DING Hao, GUAN Jian, LIU Ningbo, et al. Modeling of heavy tailed sea clutter based on the generalized central limit theory[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1591–1595. doi: 10.1109/LGRS.2016.2596322
|
[3] |
TITI G W and MARSHALL D F. The ARPA/NAVY mountaintop program: Adaptive signal processing for airborne early warning radar[C]. 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, USA, 1996: 1165–1168.
|
[4] |
DROSOPOULOS A. Description of the OHGR database[R]. Technical Note 94–14, 1994.
|
[5] |
GRECO M, STINCO P, GINI F, et al. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502–1513. doi: 10.1109/TAES.2010.5545205
|
[6] |
王帅. 基于人工智能(GAN)的影像技术探究[D]. [硕士论文], 南京师范大学, 2019.
|
[7] |
雷志勇, 黄忠平, 吴刚, 等. 机载L波段雷达海杂波幅度分布特性分析[J]. 电波科学学报, 2019, 34(5): 558–566.
LEI Zhiyong, HUANG Zhongping, WU Gang, et al. Analysis of sea clutter distribution with L-band airborne radar[J]. Chinese Journal of Radio Science, 2019, 34(5): 558–566.
|
[8] |
刘恒燕, 宋杰, 熊伟, 等. 大入射余角海杂波相关特性分析及幅度拟合[J]. 海军航空工程学院学报, 2018, 33(3): 307–312. doi: 10.7682/j.issn.1673-1522.2018.03.009
LIU Hengyan, SONG Jie, XIONG Wei, et al. Sea clutter correlation analysis and amplitude fitting for large grazing angle[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(3): 307–312. doi: 10.7682/j.issn.1673-1522.2018.03.009
|
[9] |
傅俊滔, 周国安, 陈红. 基于ZMNL的Pareto杂波模拟改进方法[J]. 弹箭与制导学报, 2019, 39(4): 19–21, 28.
FU Juntao, ZHOU Guoan, and CHEN Hong. Improved method of Pareto clutter simulation based on ZMNL[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2019, 39(4): 19–21, 28.
|
[10] |
王坤峰, 左旺孟, 谭营, 等. 生成式对抗网络: 从生成数据到创造智能[J]. 自动化学报, 2018, 44(5): 769–774.
WANG Kunfeng, ZUO Wangmeng, TAN Ying, et al. Generative adversarial networks: from generating data to creating intelligence[J]. Acta Automatica Sinica, 2018, 44(5): 769–774.
|
[11] |
徐雅楠, 刘宁波, 丁昊, 等. 利用CNN的海上目标探测背景分类方法[J]. 电子学报, 2019, 47(12): 2505–2514.
XU Yanan, LIU Ningbo, DING Hao, et al. Background classification method for marine target detection based on CNN[J]. Acta Electronica Sinica, 2019, 47(12): 2505–2514.
|
[12] |
丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006
DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
|
[13] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]. Conference on Neural Information Processing Systems (NIPS), Montreal Canada, 2014: 1–23.
|
[14] |
ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188.
|
[15] |
ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[C]. International Conference on Machine Learning, Sydneym, Australia, 2017: 1–32.
|
[16] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5767–5777.
|
[17] |
关键, 丁昊, 黄勇, 等. 实测海杂波数据空间相关性研究[J]. 电波科学学报, 2012, 27(5): 943–953.
GUAN Jian, DING Hao, HUANG Yong, et al. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5): 943–953.
|