Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Rong SHI. Characteristics Analysis and Contrast between Scalar Accumulation and Vector Accumulation in Interferometer Phase Difference Measurement[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2000-2006. doi: 10.11999/JEIT200442
Citation: Rong SHI. Characteristics Analysis and Contrast between Scalar Accumulation and Vector Accumulation in Interferometer Phase Difference Measurement[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2000-2006. doi: 10.11999/JEIT200442

Characteristics Analysis and Contrast between Scalar Accumulation and Vector Accumulation in Interferometer Phase Difference Measurement

doi: 10.11999/JEIT200442
Funds:  The Fund of National Ministries and Commissions
  • Received Date: 2020-06-03
  • Rev Recd Date: 2020-10-04
  • Available Online: 2020-10-13
  • Publish Date: 2021-07-10
  • It is one of the important approaches to improve the direction finding accuracy of interferometer to reduce the measurement error by averaging the signal phase difference between the channels in the interferometer. In this process, there are two methods: scalar accumulation and vector accumulation. In order to analyze on these two methods, after a brief introduction to the direction finding model of interferometer and the formation process of phase difference, the statistical characteristics of phase difference are deduced by using the signal vector method. Then a detailed contrast between scalar accumulation and vector accumulation of phase difference is made by using the probability distribution results derived. This not only reveals the threshold effect in scalar accumulation, but also the infinite approximation process of vector accumulation to the real value is theoretically proved. Finally, the validity and correctness of the theoretical analysis are verified by simulations. It provides an important theoretical guidance on the data processing of interferometer phase difference measurement for engineering application.
  • loading
  • [1]
    IQBAL M F, KHALID Z, ZAHID M, et al. Accuracy improvement in amplitude comparison-based passive direction finding systems by adaptive squint selection[J]. IET Radar, Sonar & Navigation, 2020, 14(5): 662–668. doi: 10.1049/iet-rsn.2019.0465
    [2]
    LEE J H, JO J I, RYU H K, et al. Approximate analysis of DF ambiguity probabilities for an interferometer direction-finding system using gamma distributions[J]. Electronics Letters, 2019, 55(25): 1320–1322. doi: 10.1049/el.2019.2274
    [3]
    GÜREL A E, ORDUYILMAZ A, SERIN M, et al. Real time ambiguity resolution in hybrid amplitude/phase comparison direction finding systems[C]. The 26th Signal Processing and Communications Applications Conference, Izmir, Turkey, 2018: 1–4.
    [4]
    LOPEZ D G, AL-TARIFI M A, LASSER G, et al. Wideband antenna systems for millimeter-wave amplitude-only direction finding[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 3122–3129. doi: 10.1109/TAP.2018.2823779
    [5]
    QU X, XU X, WANG S, et al. Direction finding for radio transmitters with mini interferometric network[J]. Radio Science, 2018, 53(10): 1218–1224. doi: 10.1029/2018RS006598
    [6]
    LEE J H and WOO J M. Interferometer direction-finding system with improved DF accuracy using two different array configurations[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 719–722. doi: 10.1109/LAWP.2014.2377291
    [7]
    SKINNER S, PATEL K, PITTMAN J, et al. Direction finding system using an N-channel software defined radio implemented with a phase interferometry algorithm[C]. 2019 SoutheastCon, Huntsville, USA, 2019: 1–5. doi: 10.1109/SoutheastCon42311.2019.9020650.
    [8]
    HUANG Lei, ZHANG Renli, SHENG Weixing, et al. Multi-target detection for FMCW radar based on interferometer direction finding[C]. 2019 International Applied Computational Electromagnetics Society Symposium, Nanjing, China, 2019: 1–2.
    [9]
    LEE J H, LEE J H, and WOO J M. Method for obtaining three- and four-element array spacing for interferometer direction-finding system[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 897–900. doi: 10.1109/LAWP.2015.2479224
    [10]
    辛金龙, 廖桂生, 杨志伟, 等. 基于旋转干涉仪圆阵化的多目标参数估计新算法[J]. 电子与信息学报, 2018, 40(2): 486–492. doi: 10.11999/JEIT170217

    XIN Jinlong, LIAO Guisheng, YANG Zhiwei, et al. Multiple source parameter estimation for rotating interferometer using circular array processing[J]. Journal of Electronics &Information Technology, 2018, 40(2): 486–492. doi: 10.11999/JEIT170217
    [11]
    石荣, 邓科, 阎剑. 普遍意义下的干涉仪通道间相位差测量精度分析[J]. 现代电子技术, 2014, 37(7): 59–63. doi: 10.16652/j.issn.1004-373x.2014.07.005

    SHI Rong, DENG Ke, and YAN Jian. Analysis on measurement accuracy of phase difference between interferometer channels in generalized condition[J]. Modern Electronics Technique, 2014, 37(7): 59–63. doi: 10.16652/j.issn.1004-373x.2014.07.005
    [12]
    WANG Sichun, INKOL R, RAJAN S, et al. An exact formula for the probability density of the phase error of a digital interferometer[C]. The 25th Biennial Symposium on Communications, Kingston, Canada, 2010: 201–204. doi: 10.1109/BSC.2010.5472920.
    [13]
    何冠良, 张娟, 张玉喜. 数字式干涉仪高精度鉴相技术[J]. 雷达与对抗, 2015, 35(4): 43–45. doi: 10.19341/j.cnki.issn.1009-0401.2015.04.012

    HE Guanliang, ZHANG Juan, and ZHANG Yuxi. High-precision phase discrimination technology for digital interferometer[J]. Radar &ECM, 2015, 35(4): 43–45. doi: 10.19341/j.cnki.issn.1009-0401.2015.04.012
    [14]
    张智锋, 乔强. 低信噪比下相关干涉仪测向处理方法[J]. 舰船电子对抗, 2009, 32(6): 103–106. doi: 10.16426/j.cnki.jcdzdk.2009.06.007

    ZHANG Zhifeng and QIAO Qiang. Direction-finding processing method of correlation interferometer under low SNR[J]. Shipboard Electronic Countermeasure, 2009, 32(6): 103–106. doi: 10.16426/j.cnki.jcdzdk.2009.06.007
    [15]
    郭东亮, 黄超, 李中华, 等. 基于信噪比估计和矢量平均的干涉仪抗噪声测向方法[J]. 数据采集与处理, 2016, 31(2): 289–295. doi: 10.16337/j.1004-9037.2016.02.008

    GUO Dongliang, HUANG Chao, LI Zhonghua, et al. Noise-robust interferometer direction finding method based on SNR estimation and vector averaging[J]. Journal of Data Acquisition and Processing, 2016, 31(2): 289–295. doi: 10.16337/j.1004-9037.2016.02.008
    [16]
    潘晓霞, 杨伟程, 杨杰. 矢量叠加算法在相关干涉仪测向中的应用[J]. 舰船电子对抗, 2015, 38(2): 63–66, 71. doi: 10.16426/j.cnki.jcdzdk.2015.02.017

    PAN Xiaoxia, YANG Weicheng, and YANG Jie. Application of vector accumulation algorithm to correlation interferometer DF[J]. Shipboard Electronic Countermeasure, 2015, 38(2): 63–66, 71. doi: 10.16426/j.cnki.jcdzdk.2015.02.017
    [17]
    VAN TREES H L, BELL K L, and TIAN Zhi. Detection, Estimation, and Modulation Theory: Part I-Detection, Estimation, and Filtering Theory[M]. 2nd ed. Hoboken, USA: John Wiley & Sons, Inc., 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (899) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return