Citation: | Weina ZHOU, Lihua SUN, Zhijing XU. A Real-time Detection Method for Multi-scale Pedestrians in Complex Environment[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2063-2070. doi: 10.11999/JEIT200436 |
[1] |
SAGAR U, RAJA R, and SHEKHAR H. Deep learning for pedestrian detection[J]. International Journal of Scientific and Research Publications, 2019, 9(8): 66–69. doi: 10.29322/IJSRP.9.08.2019.p9212
|
[2] |
PRISCILLA C V and SHEILA S P A. Pedestrian detection - A survey[C]. Proceedings of the 1st International Conference on Innovative Computing and Cutting-edge Technologies, Istanbul, Turkey, 2020: 349–358. doi: 10.1007/978-3-030-38501-9_35.
|
[3] |
CHEN Runxing, WANG Xiaofei, LIU Yong, et al. A survey of pedestrian detection based on deep learning[C]. Proceedings of the 8th International Conference on Communications, Signal Processing, and Systems, Singapore, 2020: 1511–1516.
|
[4] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[5] |
孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8): 1921–1926. doi: 10.3724/SP.J.1146.2012.01700
SUN Rui, CHEN Jun, and GAO Jun. Fast pedestrian detection based on saliency detection and HOG-NMF features[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1921–1926. doi: 10.3724/SP.J.1146.2012.01700
|
[6] |
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part- based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. doi: 10.1109/TPAMI.2009.167
|
[7] |
HASTIE T, ROSSET S, ZHU Ji, et al. Multi-class AdaBoost[J]. Statistics and its Interface, 2009, 2(3): 349–360. doi: 10.4310/SII.2009.v2.n3.a8
|
[8] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
|
[9] |
陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法[J]. 电子与信息学报, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
CHEN Yong, LIU Xi, and LIU Huanlin. Occluded pedestrian detection based on joint attention mechanism of channel-wise and spatial information[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
|
[10] |
REN Jing, REN Rui, GREEN M, et al. Defect detection from X-ray images using a three-stage deep learning algorithm[C]. Proceedings of 2019 IEEE Canadian Conference of Electrical and Computer Engineering, Edmonton, Canada, 2019: 1–4. doi: 10.1109/CCECE.2019.8861944.
|
[11] |
PAN Meiyan, CHEN Jianjun, WANG Shengli, et al. A novel approach for marine small target detection based on deep learning[C]. Proceedings of the IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 395–399. doi: 10.1109/SIPROCESS.2019.8868862.
|
[12] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
|
[13] |
GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
|
[14] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[15] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[16] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525. doi: 10.1109/CVPR.2017.690.
|
[17] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
|
[18] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
[19] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/tpami.2015.2389824
|
[20] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[21] |
LIU Weiyang, WEN Yandong, YU Zhiding, et al. Large-margin Softmax loss for convolutional neural networks[C]. Proceedings of the 33rd International Conference on Machine Learning, New York, USA, 2016: 507–516.
|
[22] |
HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1037–1045. doi: 10.1109/CVPR.2015.7298706.
|
[23] |
KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient K-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892. doi: 10.1109/TPAMI.2002.1017616
|
[24] |
BOTTOU L. Stochastic gradient descent tricks[M]. Neural Networks: Tricks of the Trade. 2nd ed. Berlin Germany: Springer, 2012: 421–436. doi: 10.1007/978-3-642-35289-8_25.
|
[25] |
RAHMAN M A and WANG Yang. Optimizing intersection-over-union in deep neural networks for image segmentation[C]. Proceedings of the 12th International Symposium on Advances in Visual Computing, Las Vegas, USA, 2016: 234–244. doi: 10.1007/978-3-319-50835-1_22.
|
[26] |
KROTOSKY S J and TRIVEDI M M. On color-, infrared-, and multimodal-stereo approaches to pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(4): 619–629. doi: 10.1109/TITS.2007.908722
|
[27] |
LIU Jingjing, ZHANG Shaoting, WANG Shu, et al. Multispectral deep neural networks for pedestrian detection[C]. Proceedings of 2016 British Machine Vision Conference, York, UK, 2016: 73.1–73.13. doi: 10.5244/C.30.73.
|
[28] |
KÖNIG D, ADAM M, JARVERS C, et al. Fully convolutional region proposal networks for multispectral person detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 243–250. doi: 10.1109/CVPRW.2017.36.
|