Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Kebin JIA, Tenghe CUI, Pengyu LIU, Chang LIU. Fast Prediction Algorithm in High Efficiency Video Coding Intra-mode Based on Deep Feature Learning[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2023-2031. doi: 10.11999/JEIT200414
Citation: Kebin JIA, Tenghe CUI, Pengyu LIU, Chang LIU. Fast Prediction Algorithm in High Efficiency Video Coding Intra-mode Based on Deep Feature Learning[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2023-2031. doi: 10.11999/JEIT200414

Fast Prediction Algorithm in High Efficiency Video Coding Intra-mode Based on Deep Feature Learning

doi: 10.11999/JEIT200414
Funds:  The National Natural Science Foundation of China (61672064), The National Key Research and Development Project of China (2018YFF01010100), The Basic Research Program of Qinghai Province (2020-ZJ-709)
  • Received Date: 2020-05-26
  • Rev Recd Date: 2020-12-15
  • Available Online: 2021-01-05
  • Publish Date: 2021-07-10
  • Compared to H.264/AVC coding standard, High Efficiency Video Coding (HEVC) improves the compression efficiency, but the consequent disadvantage is the significant increase in encoding complexity by using the quad-tree partition. A Multi-Layer Feature Transfer Convolutional Neural Network (MLFT-CNN) for Coding Unit (CU) division and characterization vector prediction in HEVC intra coding mode is proposed, which greatly reduces the complexity of video coding. Firstly, a reduced-resolution feature extraction module incorporating CU partition structure information is proposed. Then, the channel attention mechanism is improved for a better texture expression performance of the feature. After that, the feature transfer mechanism is designed to use the feature division of high-depth coding unit to guide the division of low-depth coding unit. Finally, the target loss function represented by the segmented feature is established, and the end-to-end CU division represents the vector prediction network. The experimental results show that the proposed algorithm effectively reduces the encoding complexity of HEVC without affecting the video coding quality. Specifically, compared to the standard method, the encoding complexity on the standard test sequence is reduced by 70.96% on average.
  • loading
  • [1]
    王莉, 曹一凡, 杜高明, 等. 一种低延迟的3维高效视频编码中深度建模模式编码器[J]. 电子与信息学报, 2019, 41(7): 1625–1632. doi: 10.11999/JEIT180798

    WANG Li, CAO Yifan, DU Gaoming, et al. A low-latency depth modelling mode-1 encoder in 3D-high efficiency video coding standard[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1625–1632. doi: 10.11999/JEIT180798
    [2]
    WIEGAND T, SULLIVAN G J, BJONTEGAARD G, et al. Overview of the H.264/AVC video coding standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560–576. doi: 10.1109/tcsvt.2003.815165
    [3]
    KIM I K, MIN J, LEE T, et al. Block partitioning structure in the HEVC standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1697–1706. doi: 10.1109/TCSVT.2012.2223011
    [4]
    [5]
    CORREA G, ASSUNCAO P, AGOSTINI L, et al. Performance and computational complexity assessment of high-efficiency video encoders[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1899–1909. doi: 10.1109/TCSVT.2012.2223411
    [6]
    齐美彬, 陈秀丽, 杨艳芳, 等. 高效率视频编码帧内预测编码单元划分快速算法[J]. 电子与信息学报, 2014, 36(7): 1699–1705. doi: 10.3724/SP.J.1146.2013.01148

    QI Meibin, CHEN Xiuli, YANG Yanfang, et al. Fast coding unit splitting algorithm for high efficiency video coding intra prediction[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1699–1705. doi: 10.3724/SP.J.1146.2013.01148
    [7]
    汤进, 彭勇. 基于时空相关与纹理特性的HEVC编码单元快速划分算法[J]. 计算机与数字工程, 2019, 47(7): 1753–1756, 1782. doi: 10.3969/j.issn.1672-9722.2019.07.038

    TANG Jin and PENG Yong. Fast coding unit partition algorithm for HEVC based on temporal-spatial correlation and texture property[J]. Computer and Digital Engineering, 2019, 47(7): 1753–1756, 1782. doi: 10.3969/j.issn.1672-9722.2019.07.038
    [8]
    BOUAAFIA S, KHEMIRI R, SAYADI F E, et al. Fast CU partition-based machine learning approach for reducing HEVC complexity[J]. Journal of Real-Time Image Processing, 2020, 17(1): 185–196. doi: 10.1007/s11554-019-00936-0
    [9]
    LIU Deyuan, LIU Xingang, and LI Yayong. Fast CU size decisions for HEVC intra frame coding based on support vector machines[C]. 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, Auckland, New Zealand, 2016: 594–597.
    [10]
    LIU Xingang, LI Yayong, LIU Deyuan, et al. An adaptive CU size decision algorithm for HEVC intra prediction based on complexity classification using machine learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(1): 144–155. doi: 10.1109/TCSVT.2017.2777903
    [11]
    FENG Zeqi, LIU Pengyu, JIA Kebin, et al. Fast intra CTU depth decision for HEVC[J]. IEEE Access, 2018, 6: 45262–45269. doi: 10.1109/ACCESS.2018.2864881
    [12]
    LIU Zhenyu, YU Xianyu, CHEN Shaolin, et al. CNN oriented fast HEVC intra CU mode decision[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2270–2273.
    [13]
    LI Xin and GONG Na. Run-time deep learning enhanced fast coding unit decision for high efficiency video coding[J]. Journal of Circuits, Systems and Computers, 2020, 29(3): 2050046. doi: 10.1142/S0218126620500462
    [14]
    LIU Zhenyu, YU Xianyu, GAO Yuan, et al. CU partition mode decision for HEVC hardwired intra encoder using convolution neural network[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5088–5103. doi: 10.1109/tip.2016.2601264
    [15]
    HU Jie, SHEN Li, SUN Gang, et al. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [16]
    XU Mai, DENG Xin, LI Shengxi, et al. Region-of-interest based conversational HEVC coding with hierarchical perception model of face[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3): 475–489. doi: 10.1109/jstsp.2014.2314864
    [17]
    XU Mai, LI Tianyi, WANG Zulin, et al. Reducing complexity of HEVC: A deep learning approach[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5044–5059. doi: 10.1109/TIP.2018.2847035
    [18]
    OHM J R, SULLIVAN G J, SCHWARZ H, et al. Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC)[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1669–1684. doi: 10.1109/tcsvt.2012.2221192
    [19]
    BJONTEGARD G. Calculation of average PSNR differences between RD-curves[C]. The 13th Video Coding Experts Group Meeting, Austin, USA, 2001: VCEG-M33.
    [20]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1265) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return