Citation: | Xiaonei ZHANG, Wenpeng ZHAI, Huirang HOU, Qinghao MENG. ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2032-2037. doi: 10.11999/JEIT200413 |
[1] |
CHEN Miaochuan, FANG Shuhui, and FANG Li. The effects of aromatherapy in relieving symptoms related to job stress among nurses[J]. International Journal of Nursing Practice, 2015, 21(1): 87–93. doi: 10.1111/jocn.14596
|
[2] |
KROUPI E, VESIN J M, and EBRAHIMI T. Subject-independent odor pleasantness classification using brain and peripheral signals[J]. IEEE Transactions on Affective Computing, 2016, 7(4): 422–434. doi: 10.1109/TAFFC.2015.2496310
|
[3] |
EZZATDOOST K, HOJJATI H, and AGHAJAN H. Decoding olfactory stimuli in EEG data using nonlinear Features: A pilot study[J]. Journal of Neuroscience Methods, 2020, 341: 108780. doi: 10.1016/j.jneumeth.2020.108780
|
[4] |
陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究[J]. 电子与信息学报, 2019, 41(3): 530–536. doi: 10.11999/JEIT171191
CHEN Wanzhong, WANG Xiaoxu, and ZHANG Tao. Research of discrimination between left and right hand motor imagery EEG patterns based on tunable Q-factor wavelet transform[J]. Journal of Electronics &Information Technology, 2019, 41(3): 530–536. doi: 10.11999/JEIT171191
|
[5] |
王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900
WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900
|
[6] |
佘青山, 陈希豪, 高发荣, 等. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
SHE Qingshan, CHEN Xihao, GAO Farong, et al. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
|
[7] |
单海军, 朱善安. 基于Relief-SBS的脑机接口通道选择[J]. 生物医学工程学杂志, 2016, 33(2): 350–356. doi: 10.7507/1001-5515.20160059
SHAN Haijun and ZHU Shan’an. A novel channel selection method for brain-computer interface based on Relief-SBS[J]. Journal of Biomedical Engineering, 2016, 33(2): 350–356. doi: 10.7507/1001-5515.20160059
|
[8] |
LAN Tian, ERDOGMUS D, ADAMI A, et al. Salient EEG channel selection in brain computer interfaces by mutual information maximization[C]. 2015 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2006: 7064–7067. doi: 10.1109/IEMBS.2005.1616133.
|
[9] |
LAL T N, SCHRODER M, HINTERBERGER T, et al. Support vector channel selection in BCI[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1003–1010. doi: 10.1109/TBME.2004.827827
|
[10] |
ZHANG Jianhai, CHEN Ming, ZHAO Shaokai, et al. Relieff-based EEG sensor selection methods for emotion recognition[J]. Sensors, 2016, 16(10): 1558. doi: 10.3390/s16101558
|
[11] |
PENG Hong, WANG Yongzong, CHAO Jinlong, et al. Stability study of the optimal channel selection for emotion classification from EEG[C]. 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, USA, 2017: 2031–2036. doi: 10.1109/BIBM.2017.8217973.
|
[12] |
ROBNIK-ŠIKONJA M and KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1/2): 23–69. doi: 10.1023/a:1025667309714
|
[13] |
TONG Laiyuan, ZHAO Jinchuang, and FU Wenli. Emotion recognition and channel selection based on EEG signal[C]. The 2018 11th International Conference on Intelligent Computation Technology and Automation, Changsha, China, 2018: 101–105. doi: 10.1109/ICICTA.2018.00031.
|
[14] |
王永宗. 面向情绪识别的脑电特征组合及通道优化选择研究[D]. [硕士论文], 兰州大学, 2018.
WANG Yongzong. Study on feature combination and channel optimization selection of EEG for emotion recognition[D]. [Master dissertation], Lanzhou University, 2018.
|
[15] |
AHLGREN P, JARNEVING B, and ROUSSEAU R. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient[J]. Journal of the American Society for Information Science and Technology, 2003, 54(6): 550–560. doi: 10.1002/asi.10242
|
[16] |
ZHANG Xiaonei, HOU Huirang, and MENG Qinghao. EEG-based odor recognition using channel-frequency convolutional neural network[C]. 2019 Chinese Control Conference, Guangzhou, China, 2019: 7763–7767. doi: 10.23919/ChiCC.2019.8865904.
|
[17] |
AYDEMIR O. Olfactory recognition based on EEG Gamma-band activity[J]. Neural Computation, 2017, 29(6): 1667–1680. doi: 10.1162/NECO_a_00966
|
[18] |
ZHENG Weilong and LU Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162–175. doi: 10.1109/TAMD.2015.2431497
|