Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Xiaonei ZHANG, Wenpeng ZHAI, Huirang HOU, Qinghao MENG. ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2032-2037. doi: 10.11999/JEIT200413
Citation: Xiaonei ZHANG, Wenpeng ZHAI, Huirang HOU, Qinghao MENG. ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2032-2037. doi: 10.11999/JEIT200413

ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection

doi: 10.11999/JEIT200413
Funds:  The National Natural Science Foundation of China (61573253), The National Key R&D Program of China (2017YFC0306200)
  • Received Date: 2020-05-26
  • Rev Recd Date: 2020-11-23
  • Available Online: 2020-11-26
  • Publish Date: 2021-07-10
  • The study of odor recognition based on ElectroEncephaloGram (EEG) signals has important application value to objectively evaluating olfactory function and diagnosing olfactory disorders. Because of the inconvenience caused by using too many EEG channels in practical application scenarios, it is particularly important to study how to choose EEG channels. In this paper, a new ReliefF-Pearson channel selection algorithm is proposed to solve the channel selection problem in the classification of olfactory EEG signals. The algorithm combines the weight idea of ReliefF and the correlation principle of Pearson coefficient to select EEG channels. Experimental results show that compared with the traditional ReliefF-based channel selection algorithm, the proposed algorithm could significantly reduce the number of channels used while ensuring a certain classification accuracy, and the result of channel selection does not depend on human experience and classifiers. In addition, the spatial distribution of the selected channels is consistent with the existing olfactory neurophysiological position, which further confirms the scientificity and effectiveness of this method. The proposed method provides new idea for the research of olfactory EEG channel selection.
  • loading
  • [1]
    CHEN Miaochuan, FANG Shuhui, and FANG Li. The effects of aromatherapy in relieving symptoms related to job stress among nurses[J]. International Journal of Nursing Practice, 2015, 21(1): 87–93. doi: 10.1111/jocn.14596
    [2]
    KROUPI E, VESIN J M, and EBRAHIMI T. Subject-independent odor pleasantness classification using brain and peripheral signals[J]. IEEE Transactions on Affective Computing, 2016, 7(4): 422–434. doi: 10.1109/TAFFC.2015.2496310
    [3]
    EZZATDOOST K, HOJJATI H, and AGHAJAN H. Decoding olfactory stimuli in EEG data using nonlinear Features: A pilot study[J]. Journal of Neuroscience Methods, 2020, 341: 108780. doi: 10.1016/j.jneumeth.2020.108780
    [4]
    陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究[J]. 电子与信息学报, 2019, 41(3): 530–536. doi: 10.11999/JEIT171191

    CHEN Wanzhong, WANG Xiaoxu, and ZHANG Tao. Research of discrimination between left and right hand motor imagery EEG patterns based on tunable Q-factor wavelet transform[J]. Journal of Electronics &Information Technology, 2019, 41(3): 530–536. doi: 10.11999/JEIT171191
    [5]
    王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900

    WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900
    [6]
    佘青山, 陈希豪, 高发荣, 等. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851

    SHE Qingshan, CHEN Xihao, GAO Farong, et al. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
    [7]
    单海军, 朱善安. 基于Relief-SBS的脑机接口通道选择[J]. 生物医学工程学杂志, 2016, 33(2): 350–356. doi: 10.7507/1001-5515.20160059

    SHAN Haijun and ZHU Shan’an. A novel channel selection method for brain-computer interface based on Relief-SBS[J]. Journal of Biomedical Engineering, 2016, 33(2): 350–356. doi: 10.7507/1001-5515.20160059
    [8]
    LAN Tian, ERDOGMUS D, ADAMI A, et al. Salient EEG channel selection in brain computer interfaces by mutual information maximization[C]. 2015 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2006: 7064–7067. doi: 10.1109/IEMBS.2005.1616133.
    [9]
    LAL T N, SCHRODER M, HINTERBERGER T, et al. Support vector channel selection in BCI[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1003–1010. doi: 10.1109/TBME.2004.827827
    [10]
    ZHANG Jianhai, CHEN Ming, ZHAO Shaokai, et al. Relieff-based EEG sensor selection methods for emotion recognition[J]. Sensors, 2016, 16(10): 1558. doi: 10.3390/s16101558
    [11]
    PENG Hong, WANG Yongzong, CHAO Jinlong, et al. Stability study of the optimal channel selection for emotion classification from EEG[C]. 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, USA, 2017: 2031–2036. doi: 10.1109/BIBM.2017.8217973.
    [12]
    ROBNIK-ŠIKONJA M and KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1/2): 23–69. doi: 10.1023/a:1025667309714
    [13]
    TONG Laiyuan, ZHAO Jinchuang, and FU Wenli. Emotion recognition and channel selection based on EEG signal[C]. The 2018 11th International Conference on Intelligent Computation Technology and Automation, Changsha, China, 2018: 101–105. doi: 10.1109/ICICTA.2018.00031.
    [14]
    王永宗. 面向情绪识别的脑电特征组合及通道优化选择研究[D]. [硕士论文], 兰州大学, 2018.

    WANG Yongzong. Study on feature combination and channel optimization selection of EEG for emotion recognition[D]. [Master dissertation], Lanzhou University, 2018.
    [15]
    AHLGREN P, JARNEVING B, and ROUSSEAU R. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient[J]. Journal of the American Society for Information Science and Technology, 2003, 54(6): 550–560. doi: 10.1002/asi.10242
    [16]
    ZHANG Xiaonei, HOU Huirang, and MENG Qinghao. EEG-based odor recognition using channel-frequency convolutional neural network[C]. 2019 Chinese Control Conference, Guangzhou, China, 2019: 7763–7767. doi: 10.23919/ChiCC.2019.8865904.
    [17]
    AYDEMIR O. Olfactory recognition based on EEG Gamma-band activity[J]. Neural Computation, 2017, 29(6): 1667–1680. doi: 10.1162/NECO_a_00966
    [18]
    ZHENG Weilong and LU Baoliang. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162–175. doi: 10.1109/TAMD.2015.2431497
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (1288) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return