Advanced Search
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Yanling SHI, Junhao LI. Target Detecting Algorithm Based on Subband Matrix for Slow Target in Sea Clutter[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2703-2710. doi: 10.11999/JEIT200402
Citation: Yanling SHI, Junhao LI. Target Detecting Algorithm Based on Subband Matrix for Slow Target in Sea Clutter[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2703-2710. doi: 10.11999/JEIT200402

Target Detecting Algorithm Based on Subband Matrix for Slow Target in Sea Clutter

doi: 10.11999/JEIT200402
Funds:  The National Natural Science Foundation of China (61201325), The National Incubation Fund of Nanjing University of Posts and Telecommunications (NY218045), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_0249)
  • Received Date: 2020-05-22
  • Rev Recd Date: 2020-12-22
  • Available Online: 2021-02-25
  • Publish Date: 2021-09-16
  • The matrix Constant False Alarm Rate (CFAR) detector based on the information geometry theory is an effective method for target detection in the K-distributed sea clutter environment. However, the general matrix CFAR method has a high computational complexity and its detection performance is not as good as Adaptive Normalized Matched Filter (ANMF) when the target Doppler frequency deviates from the clutter spectrum center seriously, which affects its practical application. For this reason, considered the filtered received signal by the filter bank, a Matrix CFAR Detection method based on the Filter bank subband Decomposition of Maximum Eigenvalue (FD-MEMD) is proposed. The double clutter suppression helps to solve the problem that Matrix CFAR is invalid when the target Doppler frequency is far away the central of the clutter spectrum. Finally, the simulation results show that the improved FD-MEMD has a good detection performance.
  • loading
  • [1]
    RICHARDS M A, SCHEER J A, and HOLM W A. Principles of Modern Radar[M]. Raleigh: SciTech, 2010: 101–134.
    [2]
    CONTE E, DE MAIO A, and RICCI G. Covariance matrix estimation for adaptive CFAR detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 415–426. doi: 10.1109/TAES.2002.1008976
    [3]
    郭鹏程, 刘峥, 罗丁利, 等. 基于强散射点在线估计的距离扩展目标检测方法[J]. 电子与信息学报, 2020, 42(4): 910–916. doi: 10.11999/JEIT190417

    GUO Pengcheng, LIU Zheng, LUO Dingli, et al. Range spread target detection based on online estimation of strong scattering points[J]. Journal of Electronics &Information Technology, 2020, 42(4): 910–916. doi: 10.11999/JEIT190417
    [4]
    邹鲲. 认知雷达的未知目标检测[J]. 电子与信息学报, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254

    ZOU Kun. Unknown target detection for cognitive radar[J]. Journal of Electronics &Information Technology, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254
    [5]
    孟祥伟. 秩和非参数检测器在杂波边缘中的性能[J]. 电子与信息学报, 2019, 41(12): 2859–2864. doi: 10.11999/JEIT190136

    MENG Xiangwei. Performance of rank sum nonparametric detector at clutter edge[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2859–2864. doi: 10.11999/JEIT190136
    [6]
    ARNAUDON M, BARBARESCO F, and YANG Le. Riemannian medians and means with applications to radar signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 595–604. doi: 10.1109/JSTSP.2013.2261798
    [7]
    HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Geometric means and medians with applications to target detection[J]. IET Signal Processing, 2017, 11(6): 711–720. doi: 10.1049/iet-spr.2016.0547
    [8]
    赵兴刚, 王首勇. 一种基KL分离度的改进矩阵CFAR检测方法[J]. 电子与信息学报, 2016, 38(4): 934–940. doi: 10.11999/JEIT150711

    ZHAO Xinggang and WANG Shouyong. An improved matrix CFAR detection method base on KL divergence[J]. Journal of Electronics &Information Technology, 2016, 38(4): 934–940. doi: 10.11999/JEIT150711
    [9]
    赵兴刚, 王首勇. 基于K-L散度和散度均值的改进矩阵CFAR检测器[J]. 中国科学: 信息科学, 2017, 47(2): 247–259. doi: 10.1360/N112016-00105

    ZHAO Xinggang and WANG Shouyong. Improved matrix CFAR detector based on K-L divergence and divergence mean[J]. Science in China:Information Sciences, 2017, 47(2): 247–259. doi: 10.1360/N112016-00105
    [10]
    赵兴刚, 郑岱堃, 王首勇, 等. 一种基于AR模型的矩阵CFAR检测器[J]. 电子学报, 2017, 45(12): 3019–3024. doi: 10.3969/j.issn.0372-2112.2017.12.026

    ZHAO Xinggang, ZHENG Daikun, WANG Shouyong, et al. A matrix CFAR detector based on AR model[J]. Acta Electronica Sinica, 2017, 45(12): 3019–3024. doi: 10.3969/j.issn.0372-2112.2017.12.026
    [11]
    YE Lei, YANG Qiang, CHEN Qiushi, et al. Application of joint domain localised matrix CFAR detector for HFSWR[J]. The Journal of Engineering, 2019, 2019(21): 8134–8137. doi: 10.1049/joe.2019.0744
    [12]
    赵文静, 刘畅, 刘文龙, 等. K分布海杂波背景下基于最大特征值的雷达信号检测算法[J]. 电子与信息学报, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092

    ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue based radar signal detection method for K distribution sea clutter environment[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
    [13]
    ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue-based target detection for the K-distributed clutter environment[J]. IET Radar Sonar Naving, 2018, 12(11): 1294–1306. doi: 10.1049/iet-rsn.2018.5229
    [14]
    ZHAO Wenjing and JIN Minglu. Maximum eigenvalue matrix CFAR detection using pre-processing in sea clutter[J]. IEEE Access, 2019, 7: 91414–91426. doi: 10.1109/ACCESS.2019.2928003
    [15]
    ZHAO Wenjing, JIN Minglu, and LIU Wenlong. A modified matrix CFAR detector based on maximum eigenvalue for target detection in the sea clutter[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma, USA. 2018: 896–901. doi: 10.1109/RADAR.2018.8378679.
    [16]
    ZHAO Wenjing, LIU Wenlong, and JIN Minglu. Spectral norm based mean matrix estimation and its application to radar target CFAR detection[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5746–5760. doi: 10.1109/TSP.2019.2945991
    [17]
    赵文静, 金明录, 刘文龙. 基于谱范数的矩阵CFAR检测器[J]. 电子学报, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019

    ZHAO Wenjing, JIN Minglu, and LIU Wenlong. Matrix CFAR detector based on matrix spectral norm[J]. Acta Electronica Sinica, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019
    [18]
    SHUI Penglang and SHI Yanling. Subband ANMF detection of moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3578–3593. doi: 10.1109/TAES.2012.6324742
    [19]
    SHUI Penglang, GUO Zixun, and SHI Sainan. Feature-compression-based detection of sea-surface small targets[J]. IEEE Access, 2019, 8: 8371–8385. doi: 10.1109/ACCESS.2019.2962793
    [20]
    WARD K D, TOUGH R J A, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. 2nd ed. London: IET, 2013: 101–134.
    [21]
    YU Xiaohan, CHEN Xiaolong, HUANG Yong, et al. Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 978–982. doi: 10.1109/LGRS.2019.2939264
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1119) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return