Citation: | Yanling SHI, Junhao LI. Target Detecting Algorithm Based on Subband Matrix for Slow Target in Sea Clutter[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2703-2710. doi: 10.11999/JEIT200402 |
[1] |
RICHARDS M A, SCHEER J A, and HOLM W A. Principles of Modern Radar[M]. Raleigh: SciTech, 2010: 101–134.
|
[2] |
CONTE E, DE MAIO A, and RICCI G. Covariance matrix estimation for adaptive CFAR detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 415–426. doi: 10.1109/TAES.2002.1008976
|
[3] |
郭鹏程, 刘峥, 罗丁利, 等. 基于强散射点在线估计的距离扩展目标检测方法[J]. 电子与信息学报, 2020, 42(4): 910–916. doi: 10.11999/JEIT190417
GUO Pengcheng, LIU Zheng, LUO Dingli, et al. Range spread target detection based on online estimation of strong scattering points[J]. Journal of Electronics &Information Technology, 2020, 42(4): 910–916. doi: 10.11999/JEIT190417
|
[4] |
邹鲲. 认知雷达的未知目标检测[J]. 电子与信息学报, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254
ZOU Kun. Unknown target detection for cognitive radar[J]. Journal of Electronics &Information Technology, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254
|
[5] |
孟祥伟. 秩和非参数检测器在杂波边缘中的性能[J]. 电子与信息学报, 2019, 41(12): 2859–2864. doi: 10.11999/JEIT190136
MENG Xiangwei. Performance of rank sum nonparametric detector at clutter edge[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2859–2864. doi: 10.11999/JEIT190136
|
[6] |
ARNAUDON M, BARBARESCO F, and YANG Le. Riemannian medians and means with applications to radar signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 595–604. doi: 10.1109/JSTSP.2013.2261798
|
[7] |
HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Geometric means and medians with applications to target detection[J]. IET Signal Processing, 2017, 11(6): 711–720. doi: 10.1049/iet-spr.2016.0547
|
[8] |
赵兴刚, 王首勇. 一种基KL分离度的改进矩阵CFAR检测方法[J]. 电子与信息学报, 2016, 38(4): 934–940. doi: 10.11999/JEIT150711
ZHAO Xinggang and WANG Shouyong. An improved matrix CFAR detection method base on KL divergence[J]. Journal of Electronics &Information Technology, 2016, 38(4): 934–940. doi: 10.11999/JEIT150711
|
[9] |
赵兴刚, 王首勇. 基于K-L散度和散度均值的改进矩阵CFAR检测器[J]. 中国科学: 信息科学, 2017, 47(2): 247–259. doi: 10.1360/N112016-00105
ZHAO Xinggang and WANG Shouyong. Improved matrix CFAR detector based on K-L divergence and divergence mean[J]. Science in China:Information Sciences, 2017, 47(2): 247–259. doi: 10.1360/N112016-00105
|
[10] |
赵兴刚, 郑岱堃, 王首勇, 等. 一种基于AR模型的矩阵CFAR检测器[J]. 电子学报, 2017, 45(12): 3019–3024. doi: 10.3969/j.issn.0372-2112.2017.12.026
ZHAO Xinggang, ZHENG Daikun, WANG Shouyong, et al. A matrix CFAR detector based on AR model[J]. Acta Electronica Sinica, 2017, 45(12): 3019–3024. doi: 10.3969/j.issn.0372-2112.2017.12.026
|
[11] |
YE Lei, YANG Qiang, CHEN Qiushi, et al. Application of joint domain localised matrix CFAR detector for HFSWR[J]. The Journal of Engineering, 2019, 2019(21): 8134–8137. doi: 10.1049/joe.2019.0744
|
[12] |
赵文静, 刘畅, 刘文龙, 等. K分布海杂波背景下基于最大特征值的雷达信号检测算法[J]. 电子与信息学报, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue based radar signal detection method for K distribution sea clutter environment[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
|
[13] |
ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue-based target detection for the K-distributed clutter environment[J]. IET Radar Sonar Naving, 2018, 12(11): 1294–1306. doi: 10.1049/iet-rsn.2018.5229
|
[14] |
ZHAO Wenjing and JIN Minglu. Maximum eigenvalue matrix CFAR detection using pre-processing in sea clutter[J]. IEEE Access, 2019, 7: 91414–91426. doi: 10.1109/ACCESS.2019.2928003
|
[15] |
ZHAO Wenjing, JIN Minglu, and LIU Wenlong. A modified matrix CFAR detector based on maximum eigenvalue for target detection in the sea clutter[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma, USA. 2018: 896–901. doi: 10.1109/RADAR.2018.8378679.
|
[16] |
ZHAO Wenjing, LIU Wenlong, and JIN Minglu. Spectral norm based mean matrix estimation and its application to radar target CFAR detection[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5746–5760. doi: 10.1109/TSP.2019.2945991
|
[17] |
赵文静, 金明录, 刘文龙. 基于谱范数的矩阵CFAR检测器[J]. 电子学报, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019
ZHAO Wenjing, JIN Minglu, and LIU Wenlong. Matrix CFAR detector based on matrix spectral norm[J]. Acta Electronica Sinica, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019
|
[18] |
SHUI Penglang and SHI Yanling. Subband ANMF detection of moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3578–3593. doi: 10.1109/TAES.2012.6324742
|
[19] |
SHUI Penglang, GUO Zixun, and SHI Sainan. Feature-compression-based detection of sea-surface small targets[J]. IEEE Access, 2019, 8: 8371–8385. doi: 10.1109/ACCESS.2019.2962793
|
[20] |
WARD K D, TOUGH R J A, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. 2nd ed. London: IET, 2013: 101–134.
|
[21] |
YU Xiaohan, CHEN Xiaolong, HUANG Yong, et al. Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 978–982. doi: 10.1109/LGRS.2019.2939264
|