Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Haoran LIU, Liyue ZHANG, Zhaoyu SU, Yun ZHANG, Lei ZHANG. Bayesian Variational Inference Algorithm Based on Expectation-Maximization and Simulated Annealing[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2046-2054. doi: 10.11999/JEIT200389
Citation: Haoran LIU, Liyue ZHANG, Zhaoyu SU, Yun ZHANG, Lei ZHANG. Bayesian Variational Inference Algorithm Based on Expectation-Maximization and Simulated Annealing[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2046-2054. doi: 10.11999/JEIT200389

Bayesian Variational Inference Algorithm Based on Expectation-Maximization and Simulated Annealing

doi: 10.11999/JEIT200389
Funds:  The National Key Research and Development Program of China (2019YFB1707301), Hebei Talent Engineering Training Support Project(A201903005)
  • Received Date: 2020-05-15
  • Rev Recd Date: 2021-03-19
  • Available Online: 2021-04-15
  • Publish Date: 2021-07-10
  • For the problem that Bayesian variational inference with low convergence precision is easy to fall into local optimum during search process, a Bayesian variational inference algorithm based on Expectation-Maximization (EM) and Simulated Annealing (SA) is proposed. The influence of the initial prior on the final result and the optimization efficiency of the variational free energy in the process of variational inference can not be ignored. The double EM is introduced to construct the initial prior of the variational parameter to reduce the sensitivity of the initial prior. And the inverse temperature parameter is introducted to improve the free energy function, which makes the energy be effectively controlled in the optimization process. This paper uses convergence criterion theory to analyze the convergence of the algorithm. The proposed algorithm is used for experiments with an Gaussian mixture model and the experimental results show that the proposed algorithm has better convergence results.
  • loading
  • [1]
    SEEGER M W and WIPF D P. Variational Bayesian inference techniques[J]. IEEE Signal Processing Magazine, 2010, 27(6): 81–91. doi: 10.1109/msp.2010.938082
    [2]
    MA Yanjun, ZHAO Shunyi, and HUANG Biao. Multiple-model state estimation based on variational Bayesian inference[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1679–1685. doi: 10.1109/TAC.2018.2854897
    [3]
    JORDAN M I, GHAHRAMANI Z, JAAKKOLA T S, et al. An introduction to variational methods for graphical models[J]. Machine Learning, 1999, 37(2): 183–233. doi: 10.1023/a:1007665907178
    [4]
    LATOUCHE P and ROBIN S. Variational Bayes model averaging for graphon functions and motif frequencies inference in W-graph models[J]. Statistics and Computing, 2016, 26(6): 1173–1185. doi: 10.1007/s11222-015-9607-0
    [5]
    WALTER J C and BARKEMA G T. An introduction to Monte Carlo methods[J]. Physica A: Statistical Mechanics and its Applications, 2015, 418: 78–87. doi: 10.1016/j.physa.2014.06.014
    [6]
    孙海英, 李锋, 商慧亮. 改进的变分自适应中值滤波算法[J]. 电子与信息学报, 2011, 33(7): 1743–1747. doi: 10.3724/SP.J.1146.2010.01295

    SUN Haiying, LI Feng, and SHANG Huiliang. Salt-and-pepper noise removal by variational method based on improved adaptive median filter[J]. Journal of Electronics &Information Technology, 2011, 33(7): 1743–1747. doi: 10.3724/SP.J.1146.2010.01295
    [7]
    GUINDANI M and JOHNSON W O. More nonparametric Bayesian inference in applications[J]. Statistical Methods & Applications, 2018, 27(2): 239–251. doi: 10.1007/s10260-017-0399-6
    [8]
    王瑞, 芮国胜, 张洋. 基于变分贝叶斯推断的半盲信道估计[J]. 哈尔滨工业大学学报, 2018, 50(5): 192–198. doi: 10.11918/j.issn.0367-6234.201708062

    WANG Rui, RUI Guosheng, and ZHANG Yang. Semi-blind channel estimation based on variational Bayesian inference[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 192–198. doi: 10.11918/j.issn.0367-6234.201708062
    [9]
    DE CASTRO M and VIDAL I. Bayesian inference in measurement error models from objective priors for the bivariate normal distribution[J]. Statistical Papers, 2019, 60(4): 1059–1078. doi: 10.1007/s00362-016-0863-7
    [10]
    GIANNIOTIS N, SCHNÖRR C, MOLKENTHIN C, et al. Approximate variational inference based on a finite sample of Gaussian latent variables[J]. Pattern Analysis and Applications, 2016, 19(2): 475–485. doi: 10.1007/s10044-015-0496-9
    [11]
    SHEKARAMIZ M, MOON T K, and GUNTHER J H. Sparse Bayesian learning using variational Bayes inference based on a greedy criterion[C]. 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 858–862. doi: 10.1109/ACSSC.2017.8335470.
    [12]
    KATAHIRA K, WATANABE K, and OKADA M. Deterministic annealing variant of variational Bayes method[J]. Journal of Physics: Conference Series, 2008, 95(1): 012015. doi: 10.1088/1742-6596/95/1/012015
    [13]
    TABUSHI K and INOUE J. Improvement of EM algorithm by means of non-extensive statistical mechanics[C]. Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop, North Falmouth, USA, 2001: 133–142. doi: 10.1109/NNSP.2001.943118.
    [14]
    SALIMANS T, KINGMA D P, and WELLING M. Markov Chain Monte Carlo and variational inference: Bridging the gap[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 1218–1226. doi: arxiv.org/pdf/1410.6460.
    [15]
    GHODHBANI E, KAANICHE M, and BENAZZA-BENYAHIA A. Close approximation of kullback–leibler divergence for sparse source retrieval[J]. IEEE Signal Processing Letters, 2019, 26(5): 745–749. doi: 10.1109/LSP.2019.2907374
    [16]
    HE Xingyu, TONG Ningning, and HU Xiaowei. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors[J]. Journal of Applied Remote Sensing, 2018, 12(1): 015013. doi: 10.1117/1.JRS.12.015013
    [17]
    LALAZISSIS G A, KÖNIG J, and RING P. New parametrization for the Lagrangian density of relativistic mean field theory[J]. Physical Review C, 1997, 55(1): 540–543. doi: 10.1103/PhysRevC.55.540
    [18]
    FORTUNATO S. Community detection in graphs[J]. Physics Reports, 2010, 486(3/5): 75–174. doi: 10.1016/j.physrep.2009.11.002
    [19]
    HUI Zhenyang, LI Dajun, JIN Shuanggen, et al. Automatic DTM extraction from airborne LiDAR based on expectation-maximization[J]. Optics & Laser Technology, 2019, 112: 43–55. doi: 10.1016/j.optlastec.2018.10.051
    [20]
    胡磊, 周剑雄, 石志广, 等. 利用期望-最大化算法实现基于动态词典的压缩感知[J]. 电子与信息学报, 2012, 34(11): 2554–2560. doi: 10.3724/SP.J.1146.2012.00347

    HU Lei, ZHOU Jianxiong, SHI Zhiguang, et al. An EM-based approach for compressed sensing using dynamic dictionaries[J]. Journal of Electronics &Information Technology, 2012, 34(11): 2554–2560. doi: 10.3724/SP.J.1146.2012.00347
    [21]
    LALAOUI M, EL AFIA A, and CHIHEB R. A self-tuned simulated annealing algorithm using hidden Markov model[J]. International Journal of Electrical and Computer Engineering, 2018, 8(1): 291–298. doi: 10.11591/ijece.v8i1.pp291-298
    [22]
    HUANG Longbo and NEELY M J. Delay reduction via Lagrange multipliers in stochastic network optimization[J]. IEEE Transactions on Automatic Control, 2011, 56(4): 842–857. doi: 10.1109/TAC.2010.2067371
    [23]
    陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502

    CHEN Zhimin, TIAN Mengchu, WU Panlong, et al. Intelligent particle filter based on bat algorithm[J]. Acta Physica Sinica, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (893) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return