Citation: | Zhengfeng HUANG, Xiandong LI, Peng CHEN, Qi XU, Tai Song, Haochen QI, Yiming OUYANG, Tianming NI. A Low-Cost Triple-Node-Upset-Resilient Latch Design[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2508-2517. doi: 10.11999/JEIT200379 |
[1] |
贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
|
[2] |
贺成艳, 卢晓春, 郭际. 一种新型卫星导航信号波形畸变特性评估新方法[J]. 电子与信息学报, 2019, 41(5): 1017–1024. doi: 10.11999/JEIT180656
HE Chengyan, LU Xiaochun, and GUO Ji. Evil waveform evaluating method for new GNSS signals[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1017–1024. doi: 10.11999/JEIT180656
|
[3] |
LIANG Huaguo, Li Xin, HUANG Zhengfeng, et al. Highly robust double node upset resilient hardened latch design[J]. IEICE Transactions on Electronics, 2017, E100-C(5): 496–503. doi: 10.1587/transele.E100.C.496
|
[4] |
IBE E, TANIGUCHI H, YAHAGI Y, et al. Impact of scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design rule[J]. IEEE Transactions on Electron Devices, 2010, 57(7): 1527–1538. doi: 10.1109/ted.2010.2047907
|
[5] |
冯彦君, 华更新, 刘淑芬. 航天电子抗辐射研究综述[J]. 宇航学报, 2007, 28(5): 1071–1080. doi: 10.3321/j.issn:1000-1328.2007.05.001
FENG Yanjun, HUA Gengxin, and LIU Shufen. Radiation hardness for space electronics[J]. Journal of Astronautics, 2007, 28(5): 1071–1080. doi: 10.3321/j.issn:1000-1328.2007.05.001
|
[6] |
JIANG Jianwei, XU Yiran, REN Jiangchuan, et al. Low-cost single event double-upset tolerant latch design[J]. Electronics Letters, 2018, 54(9): 554–556. doi: 10.1049/el.2018.0558
|
[7] |
HUANG Zhengfeng, ZHANG Yangyang, SU Zian, et al. A hybrid DMR latch to tolerate MNU using TDICE and WDICE[C]. 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, China, 2018: 121–126. doi: 10.1109/ats.2018.00033.
|
[8] |
WATKINS A and TRAGOUDAS S. Radiation hardened latch designs for double and triple node upsets[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 616–626. doi: 10.1109/tetc.2017.2776285
|
[9] |
YAN Aibin, LAI Chaoping, ZHANG Yinlei, et al. Novel low cost, double-and-triple-node-upset-tolerant latch designs for nano-scale CMOS[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 520–533. doi: 10.1109/TETC.2018.2871861
|
[10] |
LIU Xin. Multiple node upset-tolerant latch design[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 387–392. doi: 10.1109/TDMR.2019.2912811
|
[11] |
YAN Aibin, FENG Xiangfeng, HU Yuanjie, et al. Design of a triple-node-upset self-recoverable latch for aerospace applications in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1163–1171. doi: 10.1109/TAES.2019.2925448
|
[12] |
KUMAR C I and ANAND B. A highly reliable and energy-efficient triple-node-upset-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2196–2206. doi: 10.1109/tns.2019.2939380
|
[13] |
YAN Aibin, XU Zhelong, YANG Kang, et al. A novel low-cost TMR-without-voter based HIS-insensitive and MNU-tolerant latch design for aerospace applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2666–2676. doi: 10.1109/taes.2019.2951186
|
[14] |
LIN Dianpeng, XU Yiran, LI Xiaoyun, et al. A novel self-recoverable and triple nodes upset resilience DICE latch[J]. IEICE Electronics Express, 2018, 15(19): 20180753. doi: 10.1587/elex.15.20180753
|
[15] |
NICOLAIDIS M, PEREZ R, and ALEXANDRESCU D. Low-cost highly-robust hardened cells using blocking feedback transistors[C]. 26th IEEE VLSI Test Symposium (vts 2008), San Diego, USA, 2008: 371–376. doi: 10.1109/vts.2008.15.
|
[16] |
BLUM D R and DELGADO-FRIAS J G. Schemes for eliminating transient-width clock overhead from SET-tolerant memory-based systems[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1564–1573. doi: 10.1109/tns.2006.874496
|
[17] |
CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874–2878. doi: 10.1109/23.556880
|
[18] |
黄正峰, 王世超, 欧阳一鸣, 等. 40 nm CMOS工艺下的低功耗容软错误锁存器[J]. 电子与信息学报, 2017, 39(6): 1464–1471. doi: 10.11999/JEIT160889
HUANG Zhengfeng, WANG Shichao, OUYANG Yiming, et al. Low power soft error tolerant latch for 40 nm CMOS technology[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1464–1471. doi: 10.11999/JEIT160889
|
[19] |
黄正峰, 陈凡, 蒋翠云, 等. 基于时序优先的电路容错混合加固方案[J]. 电子与信息学报, 2014, 36(1): 234–240. doi: 10.3724/SP.J.1146.2013.00449
HUANG Zhengfeng, CHEN Fan, JIANG Cuiyun, et al. A hybrid hardening strategy for circuit soft-error-tolerance based on timing priority[J]. Journal of Electronics &Information Technology, 2014, 36(1): 234–240. doi: 10.3724/SP.J.1146.2013.00449
|
[20] |
MITRA S, SEIFERT N, ZHANG M, et al. Robust system design with built-in soft-error resilience[J]. Computer, 2005, 38(2): 43–52. doi: 10.1109/mc.2005.70
|
[21] |
NEALE A and SACHDEV M. Neutron radiation induced soft error rates for an adjacent-ECC protected SRAM in 28 nm CMOS[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1912–1917. doi: 10.1109/TNS.2016.2547963
|
[22] |
OMANA M, ROSSI D, and METRA C. Latch susceptibility to transient faults and new hardening approach[J]. IEEE Transactions on Computers, 2007, 56(9): 1255–1268. doi: 10.1109/TC.2007.1070
|
[23] |
MESSENGER G C. Collection of charge on junction nodes from ion tracks[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024–2031. doi: 10.1109/TNS.1982.4336490
|
[24] |
KATSAROU K and TSIATOUHAS Y. Soft error interception latch: Double node charge sharing SEU tolerant design[J]. Electronics Letters, 2015, 51(4): 330–332. doi: 10.1049/el.2014.4374
|
[25] |
YAN Aibin, LIANG Huaguo, HUANG Zhengfeng, et al. An SEU resilient, SET filterable and cost effective latch in presence of PVT variations[J]. Microelectronics Reliability, 2016, 63: 239–250. doi: 10.1016/j.microrel.2016.06.004
|