Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Yali QIN, Jicai MEI, Hongliang REN, Yingtian HU, Liping CHANG. Image Reconstruction Based on Gaussian Smooth Compressed Sensing Fractional Order Total Variation Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2105-2112. doi: 10.11999/JEIT200376
Citation: Yali QIN, Jicai MEI, Hongliang REN, Yingtian HU, Liping CHANG. Image Reconstruction Based on Gaussian Smooth Compressed Sensing Fractional Order Total Variation Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2105-2112. doi: 10.11999/JEIT200376

Image Reconstruction Based on Gaussian Smooth Compressed Sensing Fractional Order Total Variation Algorithm

doi: 10.11999/JEIT200376
Funds:  The National Natural Science Foundation of China (61675184, 61275124), The Natural Science Foundation of Zhejiang Province (LY18F010023)
  • Received Date: 2020-05-12
  • Rev Recd Date: 2020-11-06
  • Available Online: 2020-11-11
  • Publish Date: 2021-07-10
  • In view of the gradient effect caused by the gradient effect of the Total Variation (TV) algorithm and the environmental noise in the single pixel imaging system, an image reconstruction based on the Gaussian Smooth compressed sensing Fractional Order Total Variation algorithm (FOTVGS) is proposed. Fractional differential loss of low-frequency components of the image increases the high-frequency components of the image to achieve the purpose of enhancing image details. The Gaussian smoothing filter operator updates the Lagrangian gradient operator to filter out the additive white Gaussian noise caused by the differential operator. Simulation results show that, compared with other four similar algorithms, the algorithm can achieve the maximum Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity(SSIM) at the same sampling rate and noise level. When the sampling rate is 0.2, compared with the Fractional Order Total Variation (FOTV) algorithm, the maximum PSNR and SSIM increase by 1.39 dB (0.035) and 3.91 dB (0.098) respectively. It can be proved that this algorithm can improve the reconstruction quality of the image in the absence of noise and noise, especially in the case of noise, the quality of image reconstruction is greatly improved. The proposed algorithm provides a feasible solution for image reconstruction of noise caused by environment in single-pixel imaging and other computing imaging system.
  • loading
  • [1]
    CANDES E J. Compressive sampling[J]. Marta Sanz Solé, 2006, 17(2): 1433–1452.
    [2]
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    [3]
    BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274. doi: 10.1016/j.acha.2009.04.002
    [4]
    SELESNICK I. Total variation denoising via the Moreau envelope[J]. IEEE Signal Processing Letters, 2017, 24(2): 216–220. doi: 10.1109/LSP.2017.2647948
    [5]
    ZHANG Jian, LIU Shaohui, XIONG Ruiqin, et al. Improved total variation based image compressive sensing recovery by nonlocal regularization[C]. 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2836–2839.
    [6]
    刘亚男, 杨晓梅, 陈超楠. 基于分数阶全变分正则化的超分辨率图像重建[J]. 计算机科学, 2016, 43(5): 274–278, 307. doi: 10.11896/j.issn.1002-137X.2016.5.052

    LIU Ya’nan, YANG Xiaomei, and CHEN Chaonan. Super-resolution image reconstruction based on fractional order total variation regularization[J]. Computer Science, 2016, 43(5): 274–278, 307. doi: 10.11896/j.issn.1002-137X.2016.5.052
    [7]
    MA Liyan, MOISAN L, YU Jian, et al. A stable method solving the total variation dictionary model with Lconstraints[J]. Inverse Problems and Imaging, 2014, 8(2): 507–535. doi: 10.3934/ipi.2014.8.507
    [8]
    QU Shuai, CHANG Jun, CONG Zhenhua, et al. Data compression and SNR enhancement with compressive sensing method in phase-sensitive OTDR[J]. Optics Communications, 2019, 433: 97–103. doi: 10.1016/j.optcom.2018.09.064
    [9]
    LI Yunhui, WANG Xiaodong, WANG Zhi, et al. Modeling and image motion analysis of parallel complementary compressive sensing imaging system[J]. Optics Communications, 2018, 423: 100–110. doi: 10.1016/j.optcom.2018.04.018
    [10]
    HONG Tao and ZHU Zhihui. Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153: 188–196. doi: 10.1016/j.sigpro.2018.05.021
    [11]
    李如春, 程云霄, 覃亚丽. 稀疏信号结构性噪声干扰下的感知矩阵优化[J]. 电子与信息学报, 2019, 41(4): 911–916. doi: 10.11999/JEIT180513

    LI Ruchun, CHENG Yunxiao, and QIN Yali. Sensing matrix optimization for sparse signal under structured noise interference[J]. Journal of Electronics &Information Technology, 2019, 41(4): 911–916. doi: 10.11999/JEIT180513
    [12]
    赵辉, 张静, 张乐, 等. 基于非局部低秩和加权全变分的图像压缩感知重构算法[J]. 电子与信息学报, 2019, 41(8): 2025–2032. doi: 10.11999/JEIT180828

    ZHAO Hui, ZHANG Jing, ZHANG Le, et al. Compressed sensing image restoration based on non-local low rank and weighted total variation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2025–2032. doi: 10.11999/JEIT180828
    [13]
    PARTHASARATHY G and ABHILASH G. Entropy-based learning of sensing matrices[J]. IET Signal Processing, 2019, 13(7): 650–660. doi: 10.1049/iet-spr.2018.5078
    [14]
    LEINONEN M, CODREANU M, and JUNTTI M. Signal reconstruction performance under quantized noisy compressed sensing[C]. 2019 Data Compression Conference, Snowbird, USA, 2019: 586.
    [15]
    LI Chengbo, YIN Wotao, JIANG Hong, et al. An efficient augmented lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 2013, 56(3): 507–530. doi: 10.1007/s10589-013-9576-1
    [16]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [17]
    XIAO Yunhai, YANG Junfeng, and YUAN Xiaoming. Alternating algorithms for total variation image reconstruction from random projections[J]. Inverse Problems and Imaging, 2012, 6(3): 547–563. doi: 10.3934/ipi.2012.6.547
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1334) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return