Citation: | Yali QIN, Jicai MEI, Hongliang REN, Yingtian HU, Liping CHANG. Image Reconstruction Based on Gaussian Smooth Compressed Sensing Fractional Order Total Variation Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2105-2112. doi: 10.11999/JEIT200376 |
[1] |
CANDES E J. Compressive sampling[J]. Marta Sanz Solé, 2006, 17(2): 1433–1452.
|
[2] |
TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
|
[3] |
BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274. doi: 10.1016/j.acha.2009.04.002
|
[4] |
SELESNICK I. Total variation denoising via the Moreau envelope[J]. IEEE Signal Processing Letters, 2017, 24(2): 216–220. doi: 10.1109/LSP.2017.2647948
|
[5] |
ZHANG Jian, LIU Shaohui, XIONG Ruiqin, et al. Improved total variation based image compressive sensing recovery by nonlocal regularization[C]. 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2836–2839.
|
[6] |
刘亚男, 杨晓梅, 陈超楠. 基于分数阶全变分正则化的超分辨率图像重建[J]. 计算机科学, 2016, 43(5): 274–278, 307. doi: 10.11896/j.issn.1002-137X.2016.5.052
LIU Ya’nan, YANG Xiaomei, and CHEN Chaonan. Super-resolution image reconstruction based on fractional order total variation regularization[J]. Computer Science, 2016, 43(5): 274–278, 307. doi: 10.11896/j.issn.1002-137X.2016.5.052
|
[7] |
MA Liyan, MOISAN L, YU Jian, et al. A stable method solving the total variation dictionary model with L∞constraints[J]. Inverse Problems and Imaging, 2014, 8(2): 507–535. doi: 10.3934/ipi.2014.8.507
|
[8] |
QU Shuai, CHANG Jun, CONG Zhenhua, et al. Data compression and SNR enhancement with compressive sensing method in phase-sensitive OTDR[J]. Optics Communications, 2019, 433: 97–103. doi: 10.1016/j.optcom.2018.09.064
|
[9] |
LI Yunhui, WANG Xiaodong, WANG Zhi, et al. Modeling and image motion analysis of parallel complementary compressive sensing imaging system[J]. Optics Communications, 2018, 423: 100–110. doi: 10.1016/j.optcom.2018.04.018
|
[10] |
HONG Tao and ZHU Zhihui. Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153: 188–196. doi: 10.1016/j.sigpro.2018.05.021
|
[11] |
李如春, 程云霄, 覃亚丽. 稀疏信号结构性噪声干扰下的感知矩阵优化[J]. 电子与信息学报, 2019, 41(4): 911–916. doi: 10.11999/JEIT180513
LI Ruchun, CHENG Yunxiao, and QIN Yali. Sensing matrix optimization for sparse signal under structured noise interference[J]. Journal of Electronics &Information Technology, 2019, 41(4): 911–916. doi: 10.11999/JEIT180513
|
[12] |
赵辉, 张静, 张乐, 等. 基于非局部低秩和加权全变分的图像压缩感知重构算法[J]. 电子与信息学报, 2019, 41(8): 2025–2032. doi: 10.11999/JEIT180828
ZHAO Hui, ZHANG Jing, ZHANG Le, et al. Compressed sensing image restoration based on non-local low rank and weighted total variation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2025–2032. doi: 10.11999/JEIT180828
|
[13] |
PARTHASARATHY G and ABHILASH G. Entropy-based learning of sensing matrices[J]. IET Signal Processing, 2019, 13(7): 650–660. doi: 10.1049/iet-spr.2018.5078
|
[14] |
LEINONEN M, CODREANU M, and JUNTTI M. Signal reconstruction performance under quantized noisy compressed sensing[C]. 2019 Data Compression Conference, Snowbird, USA, 2019: 586.
|
[15] |
LI Chengbo, YIN Wotao, JIANG Hong, et al. An efficient augmented lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 2013, 56(3): 507–530. doi: 10.1007/s10589-013-9576-1
|
[16] |
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
|
[17] |
XIAO Yunhai, YANG Junfeng, and YUAN Xiaoming. Alternating algorithms for total variation image reconstruction from random projections[J]. Inverse Problems and Imaging, 2012, 6(3): 547–563. doi: 10.3934/ipi.2012.6.547
|