Advanced Search
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Changzhi XU, Yi JIN, Li LI, Xuejiao ZHANG, Tianjiao XIE, Xiaoyan WANG, Mingyu LI, Zhenxin CAO. Wireless Transmission Technology of Satellite-terrestrial Integration for 6G Mobile Communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28-36. doi: 10.11999/JEIT200363
Citation: Changzhi XU, Yi JIN, Li LI, Xuejiao ZHANG, Tianjiao XIE, Xiaoyan WANG, Mingyu LI, Zhenxin CAO. Wireless Transmission Technology of Satellite-terrestrial Integration for 6G Mobile Communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28-36. doi: 10.11999/JEIT200363

Wireless Transmission Technology of Satellite-terrestrial Integration for 6G Mobile Communication

doi: 10.11999/JEIT200363
Funds:  The National Natural Science Foundation of China (61801377), The National Key Research and Development Program (2019YFB1803102)
  • Received Date: 2020-05-08
  • Rev Recd Date: 2020-08-26
  • Available Online: 2020-09-02
  • Publish Date: 2021-01-15
  • With the commercialization of 5G mobile communication networks, researches on the development vision, capability requirements and key technologies of the new generation mobile communication systems (6G) are becoming new hotspots. Firstly, the key technical fields are summarized that may be involved in the future 6G communication, including the deep satellite-terrestrial integration, the new spectrum communication, the distributed cooperative MIMO and intelligent communication. The Space-Ground Integration Network (SGIN) based on the deep satellite-terrestrial integration is discussed further. Secondly, for the two possible network topologies, the characteristics and technical requirements of the interstellar high-speed link, the satellite-terrestrial feeder links and the user links are analyzed. The progress of high-speed communication applied to three different types of transmission links is summarized. In the end, the key technologies which are urgently needed to break through in the SGIN are analyzed and prospected, such as the multiple-access based on optical phased array, the high-efficiency satellite-terrestrial laser communication and the optoelectronic hybrid networking, and the directions are pointed out for the subsequent related researches.
  • loading
  • 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
    CHEN Shanzhi, LIANG Yingchang, SUN Shaohui, et al. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed[J]. IEEE Wireless Communications, 2020, 27(2): 218–228. doi: 10.1109/MWC.001.1900333
    尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11.

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11.
    CableFree. Beyond 5G: The roadmap to 6G and beyond[EB/OL]. https://www.cablefree.net/wireless-technology/4glte-beyond-5g-roadmap-6g-beyond, 2017.
    NIEPHAUS C, KRETSCHMER M, and GHINEA G. QoS provisioning in converged satellite and terrestrial networks: A survey of the state-of-the-art[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2415–2441. doi: 10.1109/COMST.2016.2561078
    ZHU Xiangming, JIANG Chunxiao, KUANG Linling, et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019, 33(3): 204–210. doi: 10.1109/MNET.2018.1800164
    CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on Terahertz communications[J]. China Communications, 2019, 16(2): 1–35.
    YOU Xiaohu, WANG Dongming, SHENG Bin, et al. Cooperative distributed antenna systems for mobile communications [Coordinated and Distributed MIMO][J]. IEEE Wireless Communications, 2010, 17(3): 35–43. doi: 10.1109/MWC.2010.5490977
    WANG Dongming, WANG Jiangzhou, YOU Xiaohu, et al. Spectral efficiency of distributed MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2112–2127. doi: 10.1109/JSAC.2013.131012
    尤肖虎. Shannon信息论与未来6G技术潜能[J]. 中国科学: 信息科学, 2020, 50(9): 1377–1394.

    YOU Xiaohu. Shannon theory and future 6G’s technique potentials[J]. Scientia Sinica Informationis, 2020, 50(9): 1377–1394.
    WANG Tianqi, WEN Chaokai, WANG Hanqing, et al. Deep learning for wireless physical layer: Opportunities and challenges[J]. China Communications, 2017, 14(11): 92–111. doi: 10.1109/CC.2017.8233654
    尤肖虎, 张川, 谈晓思, 等. 基于AI的5G技术——研究方向与范例[J]. 中国科学: 信息科学, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174

    YOU Xiaohu, ZHANG Chuan, TAN Xiaosi, et al. AI for 5G: Research directions and paradigms[J]. SCIENTIA SINICA Informationis, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174
    YAO Haipeng, WANG Luyao, WANG Xiaodong, et al. The Space-terrestrial integrated network: An overview[J]. IEEE Communications Magazine, 2018, 56(9): 178–185. doi: 10.1109/MCOM.2018.1700038
    FOUST J. SpaceX's space-Internet woes: Despite technical glitches, the company plans to launch the first of nearly 12, 000 satellites in 2019[J]. IEEE Spectrum, 2019, 56(1): 50–51. doi: 10.1109/MSPEC.2019.8594798
    宋奕辰, 徐小涛, 宋文婷. 国内外卫星移动通信系统发展现状综述[J]. 电信快报, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008

    SONG Yichen, XU Xiaotao, and SONG Wenting. Overview of the development of satellite mobile communication systems at home and abroad[J]. Telecommunications Information, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008
    HEINE F, SÁNCHEZ-TERCERO A, MARTIN-PIMENTEL P, et al. In orbit perfomance of tesat LCTs[J]. Proceedings of SPIE, 2019, 10910: 109100U. doi: 10.1117/12.2510721
    HAAN H and SIEMENS C. Airborne optical communication terminal: First successful link from Tenerife to the GEO Alphasat[J]. Proceedings of SPIE, 2019, 11133: 1113306. doi: 10.1117/12.2529223
    ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5U Cubesat: OCSD program[J]. Proceedings of SPIE, 2018, 11180: 111800J. doi: 10.1117/12.2535938
    CARRASCO-CASADO A, DO P X, KOLEV D, et al. Intersatellite-link demonstration mission between CubeSOTA (LEO CubeSat) and ETS9-HICALI (GEO satellite)[C]. 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, USA, 2019: 1–5. doi: 10.1109/ICSOS45490.2019.8978975.
    HAUSCHILDT H, LE GALLOU N, MEZZASOMA S, et al. Global quasi-real-time-services back to Europe: EDRS Global[J]. SPIE, 2018, 11180: 111800X. doi: 10.1117/12.2535952
    MATHASON B, ALBERT M M, ENGIN D, et al. CubeSat lasercom optical terminals for near-Earth to deep space communications[J]. Proceedings of SPIE, 2019, 10910: 1091005. doi: 10.1117/12.2508047
    MAYER D J and CAHOY K. CubeSat laser infrared crosslink[EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20180006687, 2018.
    LONG M J. Pointing acquisition and tracking design and analysis for CubeSat laser communication[D]. [Master dissertation], Massachusetts Institute of Technology, 2018.
    VELAZCO J E, GRIFFIN J, WERNICKE D, et al. High data rate inter-satellite omnidirectional optical communicator[EB/OL]. The 32nd AIAA/USU Conference on Small Satellites. http://apdsl.eng.uci.edu/RecentConferences/High%20Data%20Rate%20Inter-Satellite%20Omnidirectional%20Optical%20Communicator.pdf. 2019.
    VELAZCO J E, GRIFFIN J, WERNICKE D, et al. Inter-satellite omnidirectional optical communicator for remote sensing[J]. SPIE, 2018, 10769: 107690L. doi: 10.1117/12.2322367
    ROBINSON B S, BOROSON D M, SCHIELER C M, et al. Terabyte infraRed delivery (TBIRD): A demonstration of large-volume direct-to-earth data transfer from low-earth orbit[J]. SPIE, 2018, 10524: 105240V. doi: 10.1117/12.2295023
    PARK E A, CORNWELL D, and ISRAEL D. NASA’s next generation≥100 Gbps optical communications relay[EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20190030264, 2019.
    HAUSCHILDT H, ELIA C, JONES A, et al. ESAs ScyLight programme: Activities and status of the high throughput Optical Network "HydRON"[J]. Proceedings of SPIE, 2018, 11180: 111800G. doi: 10.1117/12.2535935
    HAUSCHILDT H, ELIA C and MOELLER H L. ScyLight-ESA’s secure and laser communication technology framework for SatCom[C]. 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 2017: 250–254. doi: 10.1109/ICSOS.2017.8357400.
    EDWARDS B L, ISRAEL D J, and WHITEMAN D E. A space based optical communications relay architecture to support future NASA science and exploration missions[C]. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, 2014: S6–1.
    KUBO-OKA T, KUNIMORI H, SUZUKI K, et al. Development of "HICALI": High speed optical feeder link system between GEO and ground[J]. Proceedings of SPIE, 2018, 11180: 1118060. doi: 10.1117/12.2536135
    KOTAKE H, NAKAMURA J, GODA T, et al. Design and verification of a space-grade 10 Gbit/s high-speed transponder for an optical feeder link[J]. SPIE, 2019, 10910: 1091012. doi: 10.1117/12.2504367
    FIELDS R A, KOZLOWSKI D A, YURA H T, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[J]. SPIE, 2011: 44–53. doi: 10.1117/12.894662.
    KANEKO K, NISHIYAMA H, KATO N, et al. Construction of a flexibility analysis model for flexible high-throughput satellite communication systems with a digital channelizer[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2097–2107. doi: 10.1109/TVT.2017.2736010
    ROUMELIOTIS A J, KOUROGIORGAS C I, and PANAGOPOULOS A D. Optimal dynamic capacity allocation for high throughput satellite communications systems[J]. IEEE Wireless Communications Letters, 2019, 8(2): 596–599. doi: 10.1109/LWC.2018.2881693
    谢珊珊, 李博. 2019年国外通信卫星发展综述[J]. 国际太空, 2020(2): 30–37.

    XIE Shanshan and LI Bo. Overview of the development of foreign communication satellites in 2019[J]. Space International, 2020(2): 30–37.
    YU Jianjun, LI Xinying, and ZHOU Wen. Tutorial: Broadband fiber-wireless integration for 5G+ communication[J]. APL Photonics, 2018, 3(11): 111101. doi: 10.1063/1.5042364
    刁文婷, 宋学瑞, 段崇棣. 星地量子保密通信进展[J]. 空间电子技术, 2016, 13(1): 83–88. doi: 10.3969/j.issn.1674-7135.2016.01.018

    DIAO Wenting, SONG Xuerui, and DUAN Chongdi. Advances in satellite-ground quantum secure Communication[J]. Space Electronic Technology, 2016, 13(1): 83–88. doi: 10.3969/j.issn.1674-7135.2016.01.018
    GREGORY M, HEINE F, KÄMPFNER H, et al. Coherent inter-satellite and satellite-ground laser links[J]. Proceedings of SPIE, 2011, 7923: 792303. doi: 10.1117/12.873532
    GREGORY M, HEINE F, KAMPFNER H, et al. Inter-satellite and satellite-ground laser communication links based on Homodyne BPSK[J]. SPIE, 2010, 7587: 75870E. doi: 10.1117/12.847888
    OAIDA B V, WU W, ERKMEN B I, et al. Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system[J]. SPIE, 2014, 8971: 89710U. doi: 10.1117/12.2045351
    LUZHANSKIY E, EDWARDS B, ISRAEL D, et al. Overview and status of the laser communication relay demonstration[J]. SPIE, 2016, 9739: 97390C. doi: 10.1117/12.2218182
    WANG J P, BROWNE C A, BURTON C D, et al. Performance and qualification of a multi-rate DPSK modem[J]. SPIE, 2014, 8971: 89710Z. doi: 10.1117/12.2057577
    WU Haiping and KAVEHRAD M. Availability evaluation of ground-to-air hybrid FSO/RF links[J]. International Journal of Wireless Information Networks, 2007, 14(1): 33–45. doi: 10.1007/s10776-006-0042-1
    TANG Y, BRANDT-PEARCE M, and WILSON S G. Adaptive coding and modulation for hybrid FSO/RF systems[C]. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2009: 1644–4649. doi: 10.1109/ACSSC.2009.5469820.
    ESLAMI A, VANGALA S, and PISHRO-NIK H. Hybrid channel codes for efficient FSO/RF communication systems[J]. IEEE Transactions on Communications, 2010, 58(10): 2926–2938. doi: 10.1109/TCOMM.2010.082710.090195
    JUAREZ J C, YOUNG D W, VENKAT R A, et al. Analysis of link performance for the FOENEX laser communications system[J]. SPIE, 2012, 8380: 838007. doi: 10.1117/12.919928
    SUN Jie, TIMURDOGAN E, YAACOBI A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195–199. doi: 10.1038/nature11727
    CALVO R M, POLIAK J, SUROF J, et al. Optical technologies for very high throughput satellite communications[J]. SPIE, 2019, 10910: 109100W. doi: 10.1117/12.2513819
    BÜCHTER K D F, HERRMANN H, LANGROCK C, et al. All-optical Ti: PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared[J]. Optics Letters, 2009, 34(4): 470–472. doi: 10.1364/OL.34.000470
    ZHANG Ze, LIANG Xinli, GOUTSOULAS M, et al. Robust propagation of pin-like optical beam through atmospheric turbulence[J]. APL Photonics, 2019, 4(7): 076103. doi: 10.1063/1.5095996
    SHANG Yu, GUO Bingli, LI Xin, et al. Traffic pattern adaptive hybrid electrical and optical switching network for HPC system[J]. IEEE Communications Letters, 2019, 23(2): 270–273. doi: 10.1109/LCOMM.2018.2886014
    ESMAIL M A, RAGHEB A, FATHALLAH H, et al. Demonstration of photonics-based switching of 5G signal over hybrid all-optical network[J]. IEEE Photonics Technology Letters, 2018, 30(13): 1250–1253. doi: 10.1109/LPT.2018.2841974
    WANG Xiaoyu, VEERARAGHAVAN M, and SHEN Haiying. Evaluation study of a proposed hadoop for data center networks incorporating optical circuit switches[J]. Journal of Optical Communications and Networking, 2018, 10(8): C50–C63. doi: 10.1364/JOCN.10.000C50
    SHI Yongpeng, CAO Yurui, LIU Jiajia, et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019, 33(1): 29–35. doi: 10.1109/MNET.2018.1800191
    DU Jun, JIANG Chunxiao, ZHANG Haijun, et al. Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2202–2217. doi: 10.1109/JSAC.2018.2869717
    向敏, 饶华阳, 张进进, 等. 基于图卷积神经网络的软件定义电力通信网络路由控制策略[J]. 电子与信息学报, 待发表. doi: 10.11999/JEIT190971.

    XIANG Min, RAO Huayang, ZHANG Jinjin, et al. Software-defined power communication network routing control strategy based on graph convolution network[J]. Journal of Electronics & Information Technology, To be publised. doi: 10.11999/JEIT190971.
    徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈[J]. 电子与信息学报, 2020, 42(10): 2319–2329. doi: 10.11999/JEIT200058

    XU Jin, WU Huici, and TAO Xiaofeng. 5G cyberspace security game[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2319–2329. doi: 10.11999/JEIT200058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (2799) PDF downloads(460) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return