| Citation: | Wenze SHAO, Miaomiao ZHANG, Haibo LI. Tiny Face Hallucination via Relativistic Adversarial Learning[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2577-2585. doi: 10.11999/JEIT200362 | 
 
	                | [1] | DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, 2014: 184–199. doi: 10.1007/978-3-319-10593-2_13. | 
| [2] | 赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501–2508. doi:  10.11999/JEIT190036 ZHAO Xiaoqiang and SONG Zhaoyang. Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2501–2508. doi:  10.11999/JEIT190036 | 
| [3] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, UK, 2014: 2672–2680. | 
| [4] | YU Xin and PORIKLI F. Ultra-resolving face images by discriminative generative networks[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 318–333. doi: 10.1007/978-3-319-46454-1_20. | 
| [5] | LUCIC M, KURACH K, MICHALSKI M, et al. Are GANs created equal? a large-scale study[EB/OL]. https://arxiv.org/abs/1711.10337, 2018. | 
| [6] | SHAO Wenze, XU Jingjing, CHEN Long, et al. On potentials of regularized Wasserstein generative adversarial networks for realistic hallucination of tiny faces[J]. Neurocomputing, 2019, 364: 1–15. doi:  10.1016/j.neucom.2019.07.046 | 
| [7] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANS[EB/OL]. https://arxiv.org/abs/1704.00028, 2017. | 
| [8] | CHEN Yu, TAI Ying, LIU Xiaoming, et al. FSRNet: End-to-end learning face super-resolution with facial priors[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2492–2501. doi: 10.1109/CVPR.2018.00264. | 
| [9] | JOLICOEUR-MARTINEAU A. The relativistic discriminator: A key element missing from standard GAN[EB/OL]. https://arxiv.org/abs/1807.00734, 2018. | 
| [10] | HE Kaiming, ZHANG Xiangyu, and REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90. | 
| [11] | HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243. | 
| [12] | HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. http://arxiv.org/abs/1704.04861, 2017. | 
| [13] | WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 2018: 63–79. doi: 10.1007/978-3-030-11021-5_5. | 
| [14] | SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–14. | 
| [15] | LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3730–3738. doi: 10.1109/ICCV.2015.425. | 
| [16] | KINGMA D P and BA J. Adam: A method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980, 2017. | 
| [17] | SONG Yibing, ZHANG Jiawei, HE Shengfeng, et al. Learning to hallucinate face images via component generation and enhancement[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 4537–4543. | 
| [18] | JIANG Junjun, HU Yi, HU Jinhui, et al. Deep CNN denoiser and multi-layer neighbor component embedding for face hallucination[C]. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 771–778. | 
