Citation: | Donglian QI, Jiaying QIAN, Yunfeng YAN, Xiaohong ZENG. A Multi-scale Detection Method for Dropper States in High-speed Railway Contact Network Based on RefineDet Network and Hough Transform[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2014-2022. doi: 10.11999/JEIT200357 |
[1] |
LIU Xiaomin, WU Junyong, YANG Yuan, et al. Multiobjective optimization of preventive maintenance schedule on traction power system in high-speed railway[C]. 2009 Annual Reliability and Maintainability Symposium, Fort Worth, USA, 2009: 365–370.
|
[2] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 2014 Computer Vision and Pattern Recognition, Columbus, USA, 2014.
|
[3] |
LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 765–781.
|
[4] |
ZHOU Xingyi, WANG Dequan, KRÄHENBUHL P, et al. Objects as points[J]. arXiv: 1904.07850, 2019.
|
[5] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[6] |
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
|
[7] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
|
[8] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[10] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
|
[11] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
|
[12] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. 14th European Conference on Computer Vision, Amsterdam, Holland, 2016: 21–37.
|
[13] |
FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv: 1701.06659, 2017.
|
[14] |
刘凯, 刘志刚, 陈隽文. 基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究[J]. 铁道学报, 2019, 41(7): 43–49. doi: 10.3969/j.issn.1001-8360.2019.07.006
LIU Kai, LIU Zhigang, and CHEN Junwen. Crack detection of messenger wire supporter in catenary support devices of high-speed railway based on faster R-CNN[J]. Journal of the China Railway Society, 2019, 41(7): 43–49. doi: 10.3969/j.issn.1001-8360.2019.07.006
|
[15] |
李彩林, 张青华, 陈文贺, 等. 基于深度学习的绝缘子定向识别算法[J]. 电子与信息学报, 2020, 42(4): 1033–1040. doi: 10.11999/JEIT190350
LI Cailin, ZHANG Qinghua, CHEN Wenhe, et al. Insulator orientation detection based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1033–1040. doi: 10.11999/JEIT190350
|
[16] |
杨红梅, 刘志刚, 韩烨, 等. 基于快速鲁棒性特征匹配的电气化铁路绝缘子不良状态检测[J]. 电网技术, 2013, 37(8): 2297–2302. doi: 10.13335/j.1000-3673.pst.2013.08.038
YANG Hongmei, LIU Zhigang, HAN Ye, et al. Defective condition detection of insulators in electrified railway based on feature matching of speeded-up robust features[J]. Power System Technology, 2013, 37(8): 2297–2302. doi: 10.13335/j.1000-3673.pst.2013.08.038
|
[17] |
闵锋, 郎达, 吴涛. 基于语义分割的接触网开口销状态检测[J]. 华中科技大学学报: 自然科学版, 2020, 48(1): 77–81. doi: 10.13245/j.hust.200114
MIN Feng, LANG Da, and WU Tao. The state detection of split pin in overhead contact system based on semantic segmentation[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2020, 48(1): 77–81. doi: 10.13245/j.hust.200114
|
[18] |
ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Single-shot refinement neural network for object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4203–4212.
|
[19] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
[20] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[21] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|