Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Xinguo DENG, Weihao YOU, Haiwei XU. Prediction of Resistance Spot Welding Parameters by Bayes-XGBoost and Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1042-1049. doi: 10.11999/JEIT200353
Citation: Xinguo DENG, Weihao YOU, Haiwei XU. Prediction of Resistance Spot Welding Parameters by Bayes-XGBoost and Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1042-1049. doi: 10.11999/JEIT200353

Prediction of Resistance Spot Welding Parameters by Bayes-XGBoost and Particle Swarm Optimization

doi: 10.11999/JEIT200353
Funds:  The National Natural Science Foundation of China (61976055)
  • Received Date: 2020-05-08
  • Rev Recd Date: 2020-09-08
  • Available Online: 2020-09-16
  • Publish Date: 2021-04-20
  • Resistance spot welding is a complex process in which many factors interact. Given the small size of data sets available and the complex nature of unstable processes, it is difficult to establish an accurate mathematical model to predict the parameters of resistance spot welding. An optimal computing method for solving this problem is presented. The method combines Bayes-XGBoost with the Particle Swarm Optimization (PSO) algorithm to select suitable features and to enable the optimal combinations of samples for 0.15 mm nickel sheets and for 0.4 mm stainless steel battery positive caps; The non-linear slicing ability and anti-overfitting mechanism of eXtreme Gradient Boosting (XGBoost) are used to train forward spot welding parameters; and Bayesian optimization is applied to the XGBoost's optimal parameter selection. The method uses the global optimization feature of Particle Swarm Optimization (PSO) to predict the backward process parameters with variable target values such that the optimal process parameters are obtained. Compared with other algorithms mentioned in this paper, this method offers more comprehensive performance and possesses better capabilities to effectively assist in the spot welding process, which are demonstrated by the resistance spot welding experiments performed.
  • loading
  • 姚杞, 李洋, 罗震, 等. 永磁体磁场对铝合金电阻点焊力学性能及微观组织的影响[J]. 焊接学报, 2016, 37(4): 52–56.

    YAO Qi, LI Yang, LUO Zhen, et al. Impact of external magnetic field generated by permanent magnet on mechanical property and microstructure of aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution, 2016, 37(4): 52–56.
    PANDA B N, RAJU BABHUBALENDRUNI M V A, BISWAL B B, et al. Application of artificial intelligence methods to spot welding of commercial aluminum sheets (B. S. 1050)[M]. DAS K N, DEEP, K, PANT M, et al. Proceedings of Fourth International Conference on Soft Computing for Problem Solving. New Delhi, India: Springer, 2015: 21–32. doi: 10.1007/978-81-322-2217-0_3.
    PANDEY A K, KHAN M I, and MOEED K M. Optimization of resistance spot welding parameters using Taguchi method[J]. International Journal of Engineering Science and Technology (IJEST) , 2013, 5(2): 234–241. doi: 10.13140/2.1.4002.1767
    ARUNCHAI T, SONTHIPERMPOON K, APICHAYAKUL P, et al. Resistance spot welding optimization based on artificial neural network[J]. International Journal of Manufacturing Engineering, 2014, 2014: 154784. doi: 10.1155/2014/154784
    PASHAZADEH H, GHEISARI Y, and HAMEDI M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549–559. doi: 10.1007/s10845-014-0891-x
    WAN Xiaodong, WANG Yuanxun, ZHAO Dawei, et al. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding[J]. Mechanical Systems and Signal Processing, 2017, 93: 634–644. doi: 10.1016/j.ymssp.2017.01.028
    王先逵, 赵杰. 基于函数连接网络的焊接结构工艺过程智能识别系统[J]. 计算机集成制造系统-CIMS, 1995(2): 44–46. doi: 10.13196/j.cims.1995.02.47.wangxk.011

    WANG Xiankui and ZHAO Jie. The intelligent recognition of Weiding structure process plans by means of the Functionai link net[J]. Computer Integrated Manufacturing Systems, 1995(2): 44–46. doi: 10.13196/j.cims.1995.02.47.wangxk.011
    赵大伟, 梁东杰, 王元勋. 基于回归分析的钛合金微电阻点焊焊接工艺优化[J]. 焊接学报, 2018, 39(4): 79–83. doi: 10.12073/j.hjxb.2018390100

    ZHAO Dawei, LIANG Dongjie, and WANG Yuanxun. Optimization of micro resistance spot welding process of titanium alloy based on regression analysis[J]. Transactions of the China Welding Institution, 2018, 39(4): 79–83. doi: 10.12073/j.hjxb.2018390100
    高星鹏, 陈峰, 王宇盛, 等. 基于遗传算法与神经网络微电阻点焊工艺参数优化[J]. 宇航材料工艺, 2018, 48(3): 33–37. doi: 10.12044/j.issn.1007-2330.2018.03.007

    GAO Xingpeng, CHEN Feng, WANG Yusheng, et al. Optimization of micro resistance spot welding process parameters based on genetic algorithm and neural network[J]. Aerospace Materials &Technology, 2018, 48(3): 33–37. doi: 10.12044/j.issn.1007-2330.2018.03.007
    刘伟, 郭猛. 基于LPSO与BP神经网络电阻点焊工艺参数建模优化[J]. 组合机床与自动化加工技术, 2016(2): 138–140. doi: 10.13462/j.cnki.mmtamt.2016.02.039

    LIU Wei and GUO Meng. The modeling and optimization of resistance spot welding process parameters based on LPSO and BP neural network[J]. Modular Machine Tool &Automatic Manufacturing Technique, 2016(2): 138–140. doi: 10.13462/j.cnki.mmtamt.2016.02.039
    舒服华, 王志辉. 基于蚁群神经网络的电阻点焊工艺参数优化[J]. 焊接, 2007(2): 39–42. doi: 10.3969/j.issn.1001-1382.2007.02.009

    SHU Fuhua and WANG Zhihui. Resistance of spot welding parameter optimization based on ANN and COA[J]. Welding &Joining, 2007(2): 39–42. doi: 10.3969/j.issn.1001-1382.2007.02.009
    徐锋, 方彦军. 基于贝叶斯优化XGBoost的现场校验仪误差预测[J]. 电测与仪表, 2019, 56(18): 120–125. doi: 10.19753/j.issn1001-1390.2019.018.017

    XU Feng and FANG Yanjun. Error prediction of field calibrator based on Bayesian optimization XGBoost[J]. Electrical Measurement &Instrumentation, 2019, 56(18): 120–125. doi: 10.19753/j.issn1001-1390.2019.018.017
    王慧芳, 张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报: 工学版, 2020, 54(3): 606–613. doi: 10.3785/j.issn.1008-973X.2020.03.022

    WANG Huifang and ZHANG Chenyu. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(3): 606–613. doi: 10.3785/j.issn.1008-973X.2020.03.022
    唐红亮, 吴柏林, 胡旺, 等. 基于粒子群优化的地震应急物资多目标调度算法[J]. 电子与信息学报, 2020, 42(3): 737–745. doi: 10.11999/JEIT190277

    TANG Hongliang, WU Bolin, HU Wang, et al. Earthquake emergency resource multiobjective schedule algorithm based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 737–745. doi: 10.11999/JEIT190277
    翁克瑞, 刘淼, 刘钱. TPE-XGBOOST与LassoLars组合下PM2.5浓度分解集成预测模型研究[J]. 系统工程理论与实践, 2020, 40(3): 748–760. doi: 10.12011/1000-6788-2018-2060-13

    WENG Kerui, LIU Miao, and LIU Qian. An integrated prediction model of PM2.5 concentration based on TPE-XGBOOST and LassoLars[J]. Systems Engineering-Theory &Practice, 2020, 40(3): 748–760. doi: 10.12011/1000-6788-2018-2060-13
    PIETA G, DOS SANTOS J, STROHAECKER T R, et al. Optimization of friction spot welding process parameters for AA2198-T8 sheets[J]. Materials and Manufacturing Processes, 2014, 29(8): 934–940. doi: 10.1080/10426914.2013.811727
    CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California, USA, 2016: 785–794. doi: 10.1145/2939672.2939785.
    SHAHRIARI B, SWERSKY K, WANG Ziyu, et al. Taking the human out of the loop: A review of bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148–175. doi: 10.1109/JPROC.2015.2494218
    SNOEK J, RIPPEL O, SWERSKY K, et al. Scalable Bayesian optimization using deep neural networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 2171-2180.
    殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
    丛雯珊, 余岚, 沃江海. 基于粒子群算法的宽带真延时方向图栅瓣抑制方法[J]. 电子与信息学报, 2019, 41(7): 1698–1704. doi: 10.11999/JEIT180719

    CONG Wenshan, YU Lan, and WO Jianghai. A grating lobe suppression method of wideband real time delay pattern based on particle swarm optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1698–1704. doi: 10.11999/JEIT180719
    SAHU P K and PAL S. Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis[J]. Journal of Magnesium and Alloys, 2015, 3(1): 36–46. doi: 10.1016/j.jma.2014.12.002
    宇慧平, 杨柳, 韩长录, 等. 拉剪载荷下超高强度钢点焊残余应力试验[J]. 焊接学报, 2015, 36(8): 75–78.

    YU Huiping, YANG Liu, HAN Changlu, et al. Experimental study on welding residual stresses in ultrahigh strength sheet with tensile and shear load[J]. Transactions of the China Welding Institution, 2015, 36(8): 75–78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(8)

    Article Metrics

    Article views (1180) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return