Citation: | Xinguo DENG, Weihao YOU, Haiwei XU. Prediction of Resistance Spot Welding Parameters by Bayes-XGBoost and Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1042-1049. doi: 10.11999/JEIT200353 |
姚杞, 李洋, 罗震, 等. 永磁体磁场对铝合金电阻点焊力学性能及微观组织的影响[J]. 焊接学报, 2016, 37(4): 52–56.
YAO Qi, LI Yang, LUO Zhen, et al. Impact of external magnetic field generated by permanent magnet on mechanical property and microstructure of aluminum alloy resistance spot weld[J]. Transactions of the China Welding Institution, 2016, 37(4): 52–56.
|
PANDA B N, RAJU BABHUBALENDRUNI M V A, BISWAL B B, et al. Application of artificial intelligence methods to spot welding of commercial aluminum sheets (B. S. 1050)[M]. DAS K N, DEEP, K, PANT M, et al. Proceedings of Fourth International Conference on Soft Computing for Problem Solving. New Delhi, India: Springer, 2015: 21–32. doi: 10.1007/978-81-322-2217-0_3.
|
PANDEY A K, KHAN M I, and MOEED K M. Optimization of resistance spot welding parameters using Taguchi method[J]. International Journal of Engineering Science and Technology (IJEST)
|
ARUNCHAI T, SONTHIPERMPOON K, APICHAYAKUL P, et al. Resistance spot welding optimization based on artificial neural network[J]. International Journal of Manufacturing Engineering, 2014, 2014: 154784. doi: 10.1155/2014/154784
|
PASHAZADEH H, GHEISARI Y, and HAMEDI M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549–559. doi: 10.1007/s10845-014-0891-x
|
WAN Xiaodong, WANG Yuanxun, ZHAO Dawei, et al. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding[J]. Mechanical Systems and Signal Processing, 2017, 93: 634–644. doi: 10.1016/j.ymssp.2017.01.028
|
王先逵, 赵杰. 基于函数连接网络的焊接结构工艺过程智能识别系统[J]. 计算机集成制造系统-CIMS, 1995(2): 44–46. doi: 10.13196/j.cims.1995.02.47.wangxk.011
WANG Xiankui and ZHAO Jie. The intelligent recognition of Weiding structure process plans by means of the Functionai link net[J]. Computer Integrated Manufacturing Systems, 1995(2): 44–46. doi: 10.13196/j.cims.1995.02.47.wangxk.011
|
赵大伟, 梁东杰, 王元勋. 基于回归分析的钛合金微电阻点焊焊接工艺优化[J]. 焊接学报, 2018, 39(4): 79–83. doi: 10.12073/j.hjxb.2018390100
ZHAO Dawei, LIANG Dongjie, and WANG Yuanxun. Optimization of micro resistance spot welding process of titanium alloy based on regression analysis[J]. Transactions of the China Welding Institution, 2018, 39(4): 79–83. doi: 10.12073/j.hjxb.2018390100
|
高星鹏, 陈峰, 王宇盛, 等. 基于遗传算法与神经网络微电阻点焊工艺参数优化[J]. 宇航材料工艺, 2018, 48(3): 33–37. doi: 10.12044/j.issn.1007-2330.2018.03.007
GAO Xingpeng, CHEN Feng, WANG Yusheng, et al. Optimization of micro resistance spot welding process parameters based on genetic algorithm and neural network[J]. Aerospace Materials &Technology, 2018, 48(3): 33–37. doi: 10.12044/j.issn.1007-2330.2018.03.007
|
刘伟, 郭猛. 基于LPSO与BP神经网络电阻点焊工艺参数建模优化[J]. 组合机床与自动化加工技术, 2016(2): 138–140. doi: 10.13462/j.cnki.mmtamt.2016.02.039
LIU Wei and GUO Meng. The modeling and optimization of resistance spot welding process parameters based on LPSO and BP neural network[J]. Modular Machine Tool &Automatic Manufacturing Technique, 2016(2): 138–140. doi: 10.13462/j.cnki.mmtamt.2016.02.039
|
舒服华, 王志辉. 基于蚁群神经网络的电阻点焊工艺参数优化[J]. 焊接, 2007(2): 39–42. doi: 10.3969/j.issn.1001-1382.2007.02.009
SHU Fuhua and WANG Zhihui. Resistance of spot welding parameter optimization based on ANN and COA[J]. Welding &Joining, 2007(2): 39–42. doi: 10.3969/j.issn.1001-1382.2007.02.009
|
徐锋, 方彦军. 基于贝叶斯优化XGBoost的现场校验仪误差预测[J]. 电测与仪表, 2019, 56(18): 120–125. doi: 10.19753/j.issn1001-1390.2019.018.017
XU Feng and FANG Yanjun. Error prediction of field calibrator based on Bayesian optimization XGBoost[J]. Electrical Measurement &Instrumentation, 2019, 56(18): 120–125. doi: 10.19753/j.issn1001-1390.2019.018.017
|
王慧芳, 张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报: 工学版, 2020, 54(3): 606–613. doi: 10.3785/j.issn.1008-973X.2020.03.022
WANG Huifang and ZHANG Chenyu. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(3): 606–613. doi: 10.3785/j.issn.1008-973X.2020.03.022
|
唐红亮, 吴柏林, 胡旺, 等. 基于粒子群优化的地震应急物资多目标调度算法[J]. 电子与信息学报, 2020, 42(3): 737–745. doi: 10.11999/JEIT190277
TANG Hongliang, WU Bolin, HU Wang, et al. Earthquake emergency resource multiobjective schedule algorithm based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 737–745. doi: 10.11999/JEIT190277
|
翁克瑞, 刘淼, 刘钱. TPE-XGBOOST与LassoLars组合下PM2.5浓度分解集成预测模型研究[J]. 系统工程理论与实践, 2020, 40(3): 748–760. doi: 10.12011/1000-6788-2018-2060-13
WENG Kerui, LIU Miao, and LIU Qian. An integrated prediction model of PM2.5 concentration based on TPE-XGBOOST and LassoLars[J]. Systems Engineering-Theory &Practice, 2020, 40(3): 748–760. doi: 10.12011/1000-6788-2018-2060-13
|
PIETA G, DOS SANTOS J, STROHAECKER T R, et al. Optimization of friction spot welding process parameters for AA2198-T8 sheets[J]. Materials and Manufacturing Processes, 2014, 29(8): 934–940. doi: 10.1080/10426914.2013.811727
|
CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California, USA, 2016: 785–794. doi: 10.1145/2939672.2939785.
|
SHAHRIARI B, SWERSKY K, WANG Ziyu, et al. Taking the human out of the loop: A review of bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148–175. doi: 10.1109/JPROC.2015.2494218
|
SNOEK J, RIPPEL O, SWERSKY K, et al. Scalable Bayesian optimization using deep neural networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 2171-2180.
|
殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
|
丛雯珊, 余岚, 沃江海. 基于粒子群算法的宽带真延时方向图栅瓣抑制方法[J]. 电子与信息学报, 2019, 41(7): 1698–1704. doi: 10.11999/JEIT180719
CONG Wenshan, YU Lan, and WO Jianghai. A grating lobe suppression method of wideband real time delay pattern based on particle swarm optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1698–1704. doi: 10.11999/JEIT180719
|
SAHU P K and PAL S. Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis[J]. Journal of Magnesium and Alloys, 2015, 3(1): 36–46. doi: 10.1016/j.jma.2014.12.002
|
宇慧平, 杨柳, 韩长录, 等. 拉剪载荷下超高强度钢点焊残余应力试验[J]. 焊接学报, 2015, 36(8): 75–78.
YU Huiping, YANG Liu, HAN Changlu, et al. Experimental study on welding residual stresses in ultrahigh strength sheet with tensile and shear load[J]. Transactions of the China Welding Institution, 2015, 36(8): 75–78.
|