Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Haiquan ZHAO, Lei LI. A Logarithmic Total Least Squares Adaptive Filtering Algorithm for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2021, 43(2): 284-288. doi: 10.11999/JEIT200344
Citation: Haiquan ZHAO, Lei LI. A Logarithmic Total Least Squares Adaptive Filtering Algorithm for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2021, 43(2): 284-288. doi: 10.11999/JEIT200344

A Logarithmic Total Least Squares Adaptive Filtering Algorithm for Impulsive Noise Suppression

doi: 10.11999/JEIT200344
Funds:  The National Natural Science Foundation of China (61871461, 61571374, 61433011), The Sichuan Science and Technology Program (19YYJC0681), The National Rail Transportation Electrification and Automation Engineering Technology Research Center Foundation (NEEC-2019-A02)
  • Received Date: 2020-04-30
  • Rev Recd Date: 2020-07-29
  • Available Online: 2020-08-22
  • Publish Date: 2021-02-23
  • In environments where both the input and output signals of the unknown system contain noise, classical adaptive filtering algorithms, such as the Least Mean Square (LMS) algorithm, will produce biased estimates. The Total Least Squares (TLS) method is devised to minimize the perturbation of errors in the input and output signals, which is an important method to solve such problems. However, when the signals are disturbed by impulsive noises, which exist in many practical applications, the performance of traditional adaptive filtering algorithms that only relies on the second-order statistics of the errors, including the TLS algorithm, will deteriorate seriously, so that it can not work properly. In order to solve this problem, based on the TLS method, this paper uses logarithmic function to improve the TLS algorithm, and proposes a Logarithmic Total Least Square (L-TLS) algorithm which can efficiently reduce the effects of impulsive noises. Finally, computer simulation experiments verify the effectiveness of the proposed algorithm.
  • loading
  • SAYED A H. Fundamentals of Adaptive Filtering[M]. New York: Wiley Interscience, 2003: 72–80.
    ARABLOUEI R, WERNER S, and DOĞANÇAY K. Analysis of the gradient-descent total least-squares adaptive filtering algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1256–1264. doi: 10.1109/TSP.2014.2301135
    DAVILA C E. An efficient recursive total least squares algorithm for FIR adaptive filtering[J]. IEEE Transactions on Signal Processing, 1994, 42(2): 268–280. doi: 10.1109/78.275601
    FENG Dazheng, ZHANG Xianda, CHANG Dongxia, et al. A fast recursive total least squares algorithm for adaptive FIR filtering[J]. IEEE Transactions on Signal Processing, 2004, 52(10): 2729–2737. doi: 10.1109/TSP.2004.834260
    FENG Dazheng and ZHENG Weixing. Fast approximate inverse power iteration algorithm for adaptive total least-squares FIR filtering[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 4032–4039. doi: 10.1109/TSP.2006.880245
    ARABLOUEI R, DOĞANÇAY K, and WERNER S. Recursive total least-squares algorithm based on inverse power method and dichotomous coordinate-descent iterations[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 1941–1949. doi: 10.1109/TSP.2015.2405492
    马济通, 邱天爽, 李蓉, 等. 脉冲噪声下基于Renyi熵的分数低阶双模盲均衡算法[J]. 电子与信息学报, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366

    MA Jitong, QIU Tianshuang, LI Rong, et al. Dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics under impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    SHEN Pengcheng and LI Chunguang. Minimum total error entropy method for parameter estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 4079–4090. doi: 10.1109/TSP.2015.2437836
    WANG Fei, HE Yicong, WANG Shiyuan, et al. Maximum total correntropy adaptive filtering against heavy-tailed noises[J]. Signal Processing, 2017, 141: 84–95. doi: 10.1016/j.sigpro.2017.05.029
    LI Lei and ZHAO Haiquan. A robust total least mean m-estimate adaptive algorithm for impulsive noise suppression[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(4): 800–804. doi: 10.1109/TCSII.2019.2925626
    SAYIN M O, VANLI N D, and KOZAT S S. A novel family of adaptive filtering algorithms based on the logarithmic cost[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4411–4424. doi: 10.1109/TSP.2014.2333559
    XIONG Kui and WANG Shiyuan. Robust least mean logarithmic square adaptive filtering algorithms[J]. Journal of the Franklin Institute, 2019, 356(1): 654–674. doi: 10.1016/j.jfranklin.2018.10.019
    SÖDERSTRÖM T. Errors-in-variables methods in system identification[J]. Automatica, 2007, 43(6): 939–958. doi: 10.1016/j.automatica.2006.11.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1703) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return