Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Hui ZHAO, Zhiwei LI, Tianqi ZHANG. Attention Based Single Shot Multibox Detector[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2096-2104. doi: 10.11999/JEIT200304
Citation: Hui ZHAO, Zhiwei LI, Tianqi ZHANG. Attention Based Single Shot Multibox Detector[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2096-2104. doi: 10.11999/JEIT200304

Attention Based Single Shot Multibox Detector

doi: 10.11999/JEIT200304
Funds:  The National Natural Science Foundation of China (61671095)
  • Received Date: 2020-04-24
  • Rev Recd Date: 2021-02-15
  • Available Online: 2021-03-31
  • Publish Date: 2021-07-10
  • Single Shot multibox Detector (SSD) is a object detection algorithm that provides the optimal trade-off among simplicity, speed and accuracy. The single use of detection layers in SSD network structure makes the feature information not fully utilized, which will lead to the small object detection are not robust enough. In this paper, an Attention based Single Shot multibox Detector (ASSD) is proposed. The ASSD algorithm first uses the proposed two-way feature fusion module to fuse the feature information to obtain the feature layer which containing rich details and semantic information. Then, the proposed joint attention unit is used to mine further the key feature information to guide the model optimization. Finally, a series of experiments on the common data set show that the ASSD algorithm effectively improves the detection accuracy of conventional SSD algorithm, especially for small object detection.
  • loading
  • [1]
    赵凤, 孙文静, 刘汉强, 等. 基于近邻搜索花授粉优化的直觉模糊聚类图像分割[J]. 电子与信息学报, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428

    ZHAO Feng, SUN Wenjing, LIU Hanqiang, et al. Intuitionistic fuzzy clustering image segmentation based on flower pollination optimization with nearest neighbor searching[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1005–1012. doi: 10.11999/JEIT190428
    [2]
    孙彦景, 石韫开, 云霄, 等. 基于多层卷积特征的自适应决策融合目标跟踪算法[J]. 电子与信息学报, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971

    SUN Yanjing, SHI Yunkai, YUN Xiao, et al. Adaptive strategy fusion target tracking based on multi-layer convolutional features[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971
    [3]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    [4]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    [5]
    GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    [6]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [7]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [8]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [9]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [10]
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    [11]
    REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7263–7271. doi: 10.1109/CVPR.2017.690.
    [12]
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833. doi: 10.1007/978-3-319-10590-1_53.
    [13]
    CHEN Chenyi, LIU Mingyu, TUZEL O, et al. R-CNN for small object detection[C]. Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, 2016: 214–230. doi: 10.1007/978-3-319-54193-8_14.
    [14]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [15]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708. doi: 10.1109/CVPR.2017.243.
    [16]
    FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv: 1701.06659, 2017.
    [17]
    SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. Dsod: Learning deeply supervised object detectors from scratch[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1919–1927. doi: 10.1109/ICCV.2017.212.
    [18]
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    [19]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117–2125. doi: 10.1109/CVPR.2017.106.
    [20]
    JEONG J, PARK H, and KWAK N. Enhancement of SSD by concatenating feature maps for object detection[C]. Proceedings of 2017 British Machine Vision Conference, London, UK, 2017.
    [21]
    LI Zuoxin and ZHOU Fuqiang. FSSD: Feature fusion single shot Multibox detector[J]. arXiv: 1712.00960, 2017.
    [22]
    MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2204–2212.
    [23]
    BAHDANAU D, CHO K, BENGIO Y, et al. Neural machine translation by jointly learning to align and translate[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [24]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5998–6008.
    [25]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [26]
    EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1120) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return