Citation: | Lei YANG, Su ZHANG, Bo HUANG, Minghui GAI, Pucheng LI. Multi-task Learning of Sparse Autofocusing for High-Resolution SAR Imagery[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2711-2719. doi: 10.11999/JEIT200300 |
[1] |
闫贺, 王珏, 黄佳, 等. 基于二维速度搜索的星载SAR运动目标聚焦算法研究[J]. 电子与信息学报, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663
YAN He, WANG Jue, HUANG Jia, et al. A moving-targets detection algorithm for spaceborne SAR system based on two-dimensional velocity search method[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663
|
[2] |
李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展[J]. 电子与信息学报, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
LI Yu, CHEN Jie, and ZAHNG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
|
[3] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[4] |
田鹤, 于海锋, 朱宇, 等. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像[J]. 电子与信息学报, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
TIAN He, YU Haifeng, ZHU Yu, et al. Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
|
[5] |
YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
|
[6] |
ALONSO M T, LOPEZ-DEKKER P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi: 10.1109/TGRS.2010.2051231
|
[7] |
ZHAO Lifan, WANG Lu, BI Guoan, et al. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392–6403. doi: 10.1109/TGRS.2013.2296497
|
[8] |
张群英, 江兆凤, 李超, 等. 太赫兹合成孔径雷达成像运动补偿算法[J]. 电子与信息学报, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201
ZHANG Qunying, JIANG Zhaofeng, LI Chao, et al. Motion compensation imaging algorithm of terahertz synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201
|
[9] |
ZHOU Song, YANG Lei, ZHAO Lifan, et al. Quasi-polar-based FFBP algorithm for miniature UAV SAR imaging without navigational data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7053–7065. doi: 10.1109/TGRS.2017.2739133
|
[10] |
LINNEHAN R, MILLER J, and ASADI A. Map-drift autofocus and scene stabilization for video-SAR[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1401–1405. doi: 10.1109/RADAR.2018.8378769.
|
[11] |
MAO Xinhua, HE Xueli, and LI Danqi. Knowledge-aided 2-D autofocus for spotlight SAR range migration algorithm imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5458–5470. doi: 10.1109/TGRS.2018.2817507
|
[12] |
KRAGH T J and KHARBOUCH A A. Monotonic iterative algorithms for SAR image restoration[C]. 2006 IEEE International Conference on Image Processing (ICIP), Atlanta, USA, 2006: 645–648. doi: 10.1109/ICIP.2006.312463.
|
[13] |
张柘, 张冰尘, 洪文, 等. 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法[J]. 雷达学报, 2016, 5(1): 25–34. doi: 10.12000/JR15055
ZHANG Zhe, ZHANG Bingchen, HONG Wen, et al. Accelerated sparse microwave imaging phase error compensation algorithm based on combination of SAR raw data simulator and Map-drift autofocus algorithm[J]. Journal of Radars, 2016, 5(1): 25–34. doi: 10.12000/JR15055
|
[14] |
GÜNGÖR A, ÇETIN M, and GÜVEN H E. Autofocused compressive SAR imaging based on the alternating direction method of multipliers[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1573–1576. doi: 10.1109/RADAR.2017.7944458.
|
[15] |
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
|
[16] |
GÜVEN H E, GÜNGÖR A, and ÇETIN M. An augmented Lagrangian method for complex-valued compressed SAR imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(3): 235–250. doi: 10.1109/TCI.2016.2580498
|
[17] |
ÖNHON N Ö and ÆETIN M. A sparsity-driven approach for SAR image formation and space-variant focusing[C]. 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 2011: 614–617. doi: 10.1109/SIU.2011.5929725.
|
[18] |
刘碧丹, 王岩飞, 韩松. 距离徙动校正和斜地变换的实时算法研究[J]. 电子与信息学报, 2009, 31(5): 1099–1102. doi: 10.3724/SP.J.1146.2008.00192
LIU Bidan, WANG Yanfei, and HAN Song. A real-time associative algorithm of RCMC and SRGR[J]. Journal of Electronics &Information Technology, 2009, 31(5): 1099–1102. doi: 10.3724/SP.J.1146.2008.00192
|
[19] |
MALEKI A, ANITORI L, YANG Z, et al. Asymptotic analysis of complex LASSO via Complex Approximate Message Passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
|
[20] |
DONOHO D L, MALEKI A, and MONTANARI A. The noise-sensitivity phase transition in compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6920–6941. doi: 10.1109/TIT.2011.2165823
|