Advanced Search
Volume 43 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
Ying WANG, Shixiong YU, Jun REN, Bin LIN. Time-Offset Generalized Frequency Division Multiplexing Communication in Doubly-selective Channels[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1080-1089. doi: 10.11999/JEIT200269
Citation: Ying WANG, Shixiong YU, Jun REN, Bin LIN. Time-Offset Generalized Frequency Division Multiplexing Communication in Doubly-selective Channels[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1080-1089. doi: 10.11999/JEIT200269

Time-Offset Generalized Frequency Division Multiplexing Communication in Doubly-selective Channels

doi: 10.11999/JEIT200269
Funds:  The National Key Research and Development Program of China (2019YFE0111600), The National Natural Science Foundation of China (61971083, 51939001), The Dalian Science and Technology Innovation Fund (2019J11CY015)
  • Received Date: 2020-04-14
  • Rev Recd Date: 2021-02-23
  • Available Online: 2021-03-14
  • Publish Date: 2021-04-20
  • The performance of Generalized Frequency Division Multiplexing (GFDM) systems significantly degrades over time-frequency doubly selective channels due to the severe inter-carrier interference and inter-subsymbol interference. To this end, a Time-Offset GFDM (TO-GFDM) is proposed, which can improve the performance of GFDM systems under doubly selective channel environment by introducing a time-offset to the prototype filter of conventional GFDM systems. The average signal-to-interference ratio of GFDM systems in doubly selective channels is analytically derived, and a pilot-aided joint iterative channel estimation and symbol detection algorithm is proposed. The proposed algorithm can progressively decrease the interference signal and improve the performance of channel estimation and symbol detection with the information exchanging between the channel estimation unit and the successive interference cancellation based symbol detection unit. The results of theoretical analysis and simulation demonstrate that in doubly selective channels, the time-offset GFDM outperforms the conventional GFDM in terms of average signal-to-interference ratio and bit error rate, and the joint iterative channel estimation and symbol detection algorithm can reduce the bit error rate effectively.
  • loading
  • MICHAILOW N, MATTHÉ M, GASPAR I S, et al. Generalized frequency division multiplexing for 5th generation cellular networks[J]. IEEE Transactions on Communications, 2014, 62(9): 3045–3061. doi: 10.1109/TCOMM.2014.2345566
    TAO Yunzheng, LIU Long, LIU Shang, et al. A survey: Several technologies of non-orthogonal transmission for 5G[J]. China Communications, 2015, 12(10): 1–15. doi: 10.1109/CC.2015.7315054
    FETTWEIS G, KRONDORF M, and BITTNER S. GFDM-generalized frequency division multiplexing[C]. The 69th IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–4.
    LI Fei, ZHENG Kan, LONG Hang, et al. Performance analysis of complementary GFDM in IoT communications[C]. 2019 IEEE 89th Vehicular Technology Conference, Kuala Lumpur, Malaysia, 2019: 1–5.
    钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787

    QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics &Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787
    DE ALMEIDA I B F, MENDES L L, RODRIGUES J J P C, et al. 5G waveforms for IoT applications[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2554–2567. doi: 10.1109/COMST.2019.2910817
    LIM B and KO Y C. SIR analysis of OFDM and GFDM waveforms with timing offset, CFO, and phase noise[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6979–6990. doi: 10.1109/TWC.2017.2736998
    MOHAMMADIAN A, TELLAMBURA C, and VALKAMA M. Analysis of self-interference cancellation under phase noise, CFO, and IQ imbalance in GFDM full-duplex transceivers[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 700–713. doi: 10.1109/TVT.2019.2953623
    VILAIPORNSAWAI U and JIA Ming. Scattered-pilot channel estimation for GFDM[C]. 2014 IEEE Wireless Communications and Networking Conference, Istanbul, Turkey, 2014: 1053–1058.
    EHSANFAR S, MATTHE M, ZHANG Dan, et al. Interference-free pilots insertion for MIMO-GFDM channel estimation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
    NA Zhenyu, PAN Zheng, XIONG Mudi, et al. Soft decision control iterative channel estimation for the internet of things in 5G networks[J]. IEEE Internet of Things Journal, 2019, 6(4): 5990–5998. doi: 10.1109/JIOT.2018.2864213
    CHENG Hao, XIA Yili, HUANG Yongming, et al. Joint channel estimation and Tx/Rx I/Q imbalance compensation for GFDM systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1304–1317. doi: 10.1109/TWC.2019.2891649
    LI Fei, ZHENG Kan, ZHAO Long, et al. Design and performance of a novel interference-free GFDM transceiver with dual filter[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4695–4706. doi: 10.1109/TVT.2019.2902561
    JEONG J, PARK Y, WEON S, et al. Eigendecomposition-based GFDM for interference-free data transmission and pilot insertion for channel estimation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6931–6943. doi: 10.1109/TWC.2018.2864995
    EHSANFAR S, MATTHÉ M, CHAFII M, et al. Pilot-and CP-aided channel estimation in MIMO non-orthogonal multi-carriers[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 650–664. doi: 10.1109/TWC.2018.2883940
    GOLDSMITH A. Wireless Communications[M]. New York: Cambridge University Press, 2005: 71–74.
    KOZEK W and MOLISCH A F. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1579–1589. doi: 10.1109/49.730463
    NISSEL R, ADEMAJ F, and RUPP M. Doubly-selective channel estimation in FBMC-OQAM and OFDM systems[C]. The 88th IEEE Vehicular Technology Conference, Chicago, USA, 2018: 1–5.
    KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood Cliffs: PTR Prentice-Hall, 1993: 344–365.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1156) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return