Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Jindong XU, Tianyu ZHAO, Guozheng FENG, Shifeng OU. Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263
Citation: Jindong XU, Tianyu ZHAO, Guozheng FENG, Shifeng OU. Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263

Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering

doi: 10.11999/JEIT200263
Funds:  The National Natural Science Foundation of China (62072391, 62066013), The Natural Science Foundation of Shandong Province (ZR2019MF060, ZR2017MF008), The Project of Shandong Province Higher Educational Science and Technology Key Program (J18KZ016), The Yantai Science and Technology Plan (2018YT06000271)
  • Received Date: 2020-04-10
  • Rev Recd Date: 2020-10-23
  • Available Online: 2021-03-30
  • Publish Date: 2021-07-10
  • The correlation information between pixels is of great significance for image segmentation. The existing Fuzzy C-Means (FCM) clustering algorithm lacks sufficient consideration for it. Based on the reliability measure of spatial context, this paper proposes a Reliability-based Spatial context Fuzzy C-Means (RSFCM) clustering algorithm: The clustering algorithm anti-noise performance is improved by effectively modeling the spatial neighborhood; A new reliability fuzzy metric is proposed, which balances the relationship between detail retention and anti-noise, so that the clustering results are more accurate. A synthetic image, a traffic sign image and a remote sensing image are used to test the algorithms performance. The results show, compared with the existing FCM algorithm, RSFCM can effectively suppress heterogeneity of intra-class objects caused by Salt & Pepper noise and Gaussian noise for the image segmentation, improve pixels separability and preserve the edge details of the image greatly.
  • loading
  • [1]
    LU Zhenyu, QIU Yunan, and ZHAN Tianming. Neutrosophic C-means clustering with local information and noise distance-based kernel metric image segmentation[J]. Journal of Visual Communication and Image Representation, 2019, 58: 269–276. doi: 10.1016/j.jvcir.2018.11.045
    [2]
    SOOMRO S, MUNIR A, and CHOI K N. Fuzzy c-means clustering based active contour model driven by edge scaled region information[J]. Expert Systems with Applications, 2019, 120: 387–396. doi: 10.1016/j.eswa.2018.10.052
    [3]
    施伟锋, 卓金宝, 兰莹. 一种基于属性空间相似性的模糊聚类算法[J]. 电子与信息学报, 2019, 41(11): 2722–2728. doi: 10.11999/JEIT180974

    SHI Weifeng, ZHUO Jinbao, and LAN Ying. A novel fuzzy clustering algorithm based on similarity of attribute space[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2722–2728. doi: 10.11999/JEIT180974
    [4]
    吴志勇, 丁香乾, 许晓伟, 等. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417

    WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417
    [5]
    BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Boston: Springer, 1981: 203–239. doi: 10.1007/978-1-4757-0450-1.
    [6]
    ZHANG Tong, SU Guoxi, QING Chunmei, et al. Hierarchical lifelong learning by sharing representations and integrating hypothesis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(12): 1004–1014. doi: 10.1109/TSMC.2018.2884996
    [7]
    SINGH C and BALA A. A local Zernike moment-based unbiased nonlocal means fuzzy C-Means algorithm for segmentation of brain magnetic resonance images[J]. Expert Systems with Applications, 2019, 118: 625–639. doi: 10.1016/j.eswa.2018.10.023
    [8]
    费博雯, 邱云飞, 刘万军, 等. 距离决策下的模糊聚类集成模型[J]. 电子与信息学报, 2018, 40(8): 1895–1903. doi: 10.11999/JEIT171065

    FEI Bowen, QIU Yunfei, LIU Wanjun, et al. Fuzzy clustering ensemble model based on distance decision[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1895–1903. doi: 10.11999/JEIT171065
    [9]
    AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193–199. doi: 10.1109/42.996338
    [10]
    CHEN Songcan and ZHANG Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2004, 34(4): 1907–1916. doi: 10.1109/TSMCB.2004.831165
    [11]
    ZHANG Hua, WANG Qunming, SHI Wenzhong, et al. A novel adaptive fuzzy local information C-means clustering algorithm for remotely sensed imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5057–5068. doi: 10.1109/TGRS.2017.2702061
    [12]
    KRINIDIS S and CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328–1337. doi: 10.1109/TIP.2010.2040763
    [13]
    LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027–3041. doi: 10.1109/TFUZZ.2018.2796074
    [14]
    XING Haihua, HE Hui, HU Dan, et al. An interval Type-2 fuzzy sets generation method for remote sensing imagery classification[J]. Computers & Geosciences, 2019, 133: 104287. doi: 10.1016/j.cageo.2019.06.008
    [15]
    CHEN C L P, ZHANG Tong, CHEN Long, et al. I-ching divination evolutionary algorithm and its convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(1): 2–13. doi: 10.1109/TCYB.2015.2512286
    [16]
    ZHANG Tong, CHEN C L P, CHEN Long, et al. Design of highly nonlinear substitution boxes based on I-ching operators[J]. IEEE Transactions on Cybernetics, 2018, 48(12): 3349–3358. doi: 10.1109/TCYB.2018.2846186
    [17]
    NEWTON I. Mathematical Principles of Natural Philosophy[M]. London: Benjamin Motte Publishing, 1687.
    [18]
    徐超, 詹天明, 孔令成, 等. 基于学生t分布的鲁棒分层模糊算法及其在图像分割中的应用[J]. 电子学报, 2017, 45(7): 1695–1700. doi: 10.3969/j.issn.0372-2112.2017.07.020

    XU Chao, ZHAN Tianming, KONG Lingcheng, et al. A robust hierarchical fuzzy algorithm with student’s t-distribution for image segmentation application[J]. Acta Electronica Sinica, 2017, 45(7): 1695–1700. doi: 10.3969/j.issn.0372-2112.2017.07.020
    [19]
    赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106–1113. doi: 10.12000/JRIT180605

    ZHAO Feng, ZHANG Mimi, and LIU Hanqiang. Multi-objective evolutionary semi-supervised fuzzy clustering image segmentation motivated by region information[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1106–1113. doi: 10.12000/JRIT180605
    [20]
    CAO Changyu, ZHENG Jiachun, HUANG Yiqi, et al. Investigation of a promoted you only look once algorithm and its application in traffic flow monitoring[J]. Applied Sciences, 2019, 9(17): 3619. doi: 10.3390/app9173619
    [21]
    ZHANG Lefei, ZHANG Liangpei, DU Bo, et al. Hyperspectral image unsupervised classification by robust manifold matrix factorization[J]. Information Sciences, 2019, 485: 154–169. doi: 10.1016/j.ins.2019.02.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1178) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return