| Citation: | Jindong XU, Tianyu ZHAO, Guozheng FENG, Shifeng OU. Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263 | 
 
	                | [1] | LU Zhenyu, QIU Yunan, and ZHAN Tianming. Neutrosophic C-means clustering with local information and noise distance-based kernel metric image segmentation[J]. Journal of Visual Communication and Image Representation, 2019, 58: 269–276. doi:  10.1016/j.jvcir.2018.11.045 | 
| [2] | SOOMRO S, MUNIR A, and CHOI K N. Fuzzy c-means clustering based active contour model driven by edge scaled region information[J]. Expert Systems with Applications, 2019, 120: 387–396. doi:  10.1016/j.eswa.2018.10.052 | 
| [3] | 施伟锋, 卓金宝, 兰莹. 一种基于属性空间相似性的模糊聚类算法[J]. 电子与信息学报, 2019, 41(11): 2722–2728. doi:  10.11999/JEIT180974 SHI Weifeng, ZHUO Jinbao, and LAN Ying. A novel fuzzy clustering algorithm based on similarity of attribute space[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2722–2728. doi:  10.11999/JEIT180974 | 
| [4] | 吴志勇, 丁香乾, 许晓伟, 等. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018, 44(10): 1913–1920. doi:  10.16383/j.aas.2018.c170417 WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi:  10.16383/j.aas.2018.c170417 | 
| [5] | BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Boston: Springer, 1981: 203–239. doi: 10.1007/978-1-4757-0450-1. | 
| [6] | ZHANG Tong, SU Guoxi, QING Chunmei, et al. Hierarchical lifelong learning by sharing representations and integrating hypothesis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(12): 1004–1014. doi:  10.1109/TSMC.2018.2884996 | 
| [7] | SINGH C and BALA A. A local Zernike moment-based unbiased nonlocal means fuzzy C-Means algorithm for segmentation of brain magnetic resonance images[J]. Expert Systems with Applications, 2019, 118: 625–639. doi:  10.1016/j.eswa.2018.10.023 | 
| [8] | 费博雯, 邱云飞, 刘万军, 等. 距离决策下的模糊聚类集成模型[J]. 电子与信息学报, 2018, 40(8): 1895–1903. doi:  10.11999/JEIT171065 FEI Bowen, QIU Yunfei, LIU Wanjun, et al. Fuzzy clustering ensemble model based on distance decision[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1895–1903. doi:  10.11999/JEIT171065 | 
| [9] | AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193–199. doi:  10.1109/42.996338 | 
| [10] | CHEN Songcan and ZHANG Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  | 
| [11] | ZHANG Hua, WANG Qunming, SHI Wenzhong, et al. A novel adaptive fuzzy local information C-means clustering algorithm for remotely sensed imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5057–5068. doi:  10.1109/TGRS.2017.2702061 | 
| [12] | KRINIDIS S and CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328–1337. doi:  10.1109/TIP.2010.2040763 | 
| [13] | LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027–3041. doi:  10.1109/TFUZZ.2018.2796074 | 
| [14] | XING Haihua, HE Hui, HU Dan, et al. An interval Type-2 fuzzy sets generation method for remote sensing imagery classification[J]. Computers & Geosciences, 2019, 133: 104287. doi:  10.1016/j.cageo.2019.06.008 | 
| [15] | CHEN C L P, ZHANG Tong, CHEN Long, et al. I-ching divination evolutionary algorithm and its convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(1): 2–13. doi:  10.1109/TCYB.2015.2512286 | 
| [16] | ZHANG Tong, CHEN C L P, CHEN Long, et al. Design of highly nonlinear substitution boxes based on I-ching operators[J]. IEEE Transactions on Cybernetics, 2018, 48(12): 3349–3358. doi:  10.1109/TCYB.2018.2846186 | 
| [17] | NEWTON I. Mathematical Principles of Natural Philosophy[M]. London: Benjamin Motte Publishing, 1687. | 
| [18] | 徐超, 詹天明, 孔令成, 等. 基于学生t分布的鲁棒分层模糊算法及其在图像分割中的应用[J]. 电子学报, 2017, 45(7): 1695–1700. doi:  10.3969/j.issn.0372-2112.2017.07.020 XU Chao, ZHAN Tianming, KONG Lingcheng, et al. A robust hierarchical fuzzy algorithm with student’s t-distribution for image segmentation application[J]. Acta Electronica Sinica, 2017, 45(7): 1695–1700. doi:  10.3969/j.issn.0372-2112.2017.07.020 | 
| [19] | 赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106–1113. doi:  10.12000/JRIT180605 ZHAO Feng, ZHANG Mimi, and LIU Hanqiang. Multi-objective evolutionary semi-supervised fuzzy clustering image segmentation motivated by region information[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1106–1113. doi:  10.12000/JRIT180605 | 
| [20] | CAO Changyu, ZHENG Jiachun, HUANG Yiqi, et al. Investigation of a promoted you only look once algorithm and its application in traffic flow monitoring[J]. Applied Sciences, 2019, 9(17): 3619. doi:  10.3390/app9173619 | 
| [21] | ZHANG Lefei, ZHANG Liangpei, DU Bo, et al. Hyperspectral image unsupervised classification by robust manifold matrix factorization[J]. Information Sciences, 2019, 485: 154–169. doi:  10.1016/j.ins.2019.02.008 | 
