Advanced Search
Volume 43 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Qianbin CHEN, Qi TAN, Lanqin HE, Lun TANG. Research on Resource Allocation and Offloading Decision Based on Multi-agent Architecture in Cloud-fog Hybrid Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2654-2662. doi: 10.11999/JEIT200256
Citation: Qianbin CHEN, Qi TAN, Lanqin HE, Lun TANG. Research on Resource Allocation and Offloading Decision Based on Multi-agent Architecture in Cloud-fog Hybrid Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2654-2662. doi: 10.11999/JEIT200256

Research on Resource Allocation and Offloading Decision Based on Multi-agent Architecture in Cloud-fog Hybrid Network

doi: 10.11999/JEIT200256
Funds:  The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M20180601), The Major Theme Special Projects of Chongqing (cstc2019jscx-zdztzxX0006)
  • Received Date: 2020-04-10
  • Rev Recd Date: 2021-03-02
  • Available Online: 2021-03-30
  • Publish Date: 2021-09-16
  • To optimize strategy of resource allocation and task offloading decision on D2D-assisted cloud-fog architecture, a joint resource allocation and offloading decision algorithm based on a multi-agent architecture deep reinforcement learning method is proposed. Firstly, considering incentive constraints, energy constraints, and network resource constraints, the algorithm jointly optimizes wireless resource allocation, computing resource allocation, and offloading decisions. Further, the algorithm establishes a stochastic optimization model that maximizes the total user Quality of Experience (QoE) of the system, and transfers it into an MDP problem. Secondly, the algorithm factorizes the original MDP problem and models a Markov game. Then, a centralized training and distributed execution mechanism based on the Actor-Critic (AC) algorithm is proposed. In the centralized training process, multi-agents obtains the global information through cooperation to optimize the resource allocation and task offloading decision strategies. After the training process, each agent performs independently resource allocation and task offloading based on the current system state and strategy. Finally, the simulation results demonstrate that the algorithm can effectively improve user QoE, and reduce delay and energy consumption.
  • loading
  • [1]
    ARJOUNE Y and FARUQUE S. Artificial intelligence for 5G wireless systems: Opportunities, challenges, and future research direction[C]. 2020 10th Annual Computing and Communication Workshop and Conference(CCWC), Las Vegas, USA, 2020: 1023–1028. doi: 10.1109/CCWC47524.2020.9031117.
    [2]
    LI Zhuo, ZHOU Xu, and QIN Yifang. A survey of mobile edge computing in the industrial internet[C]. The 7th International Conference on Information, Communication and Networks (ICICN), Macao, China, 2019: 94–98. doi: 10.1109/ICICN.2019.8834959.
    [3]
    SHAH-MANSOURI H and WONG V W S. Hierarchical fog-cloud computing for IoT systems: A computation offloading game[J]. IEEE Internet of Things Journal, 2018, 5(4): 3246–3257. doi: 10.1109/JIOT.2018.2838022
    [4]
    HE Yinghui, REN Jinke, Yu Guanding, et al. D2D communications meet mobile edge computing for enhanced computation capacity in cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1750–1763. doi: 10.1109/TWC.2019.2896999
    [5]
    YI Changyan, HUANG Shiwei, and CAI Jun. Joint resource allocation for device-to-device communication assisted fog computing[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 1076–1091. doi: 10.1109/TMC.2019.2952354
    [6]
    DINH T Q, LA Q D, QUEK T Q S, et al. Learning for computation offloading in mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(12): 6353–6367. doi: 10.1109/TCOMM.2018.2866572
    [7]
    LIU Yiming, YU F R, LI Xi, et al. Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12137–12151. doi: 10.1109/TVT.2018.2872912
    [8]
    向旭东. 云计算性能与节能的动态优化研究[D]. [博士论文], 北京科技大学, 2015.

    XIANG Xudong. Dynamic optimization of performance and energy consumption in cloud computing[D]. [Ph. D. dissertation], University of Science and Technology Beijing, 2015.
    [9]
    MIN Minghui, XIAO Liang, CHEN Ye, et al. Learning-based computation offloading for IoT devices with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1930–1941. doi: 10.1109/TVT.2018.2890685
    [10]
    LI Zheng and GUO Caili. Multi-agent deep reinforcement learning based spectrum allocation for D2D underlay communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1828–1840. doi: 10.1109/TVT.2019.2961405
    [11]
    ZHONG Chen, GURSOY M C, and VELIPASALAR S. Deep multi-agent reinforcement learning based cooperative edge caching in wireless networks[C]. The ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. doi: 10.1109/ICC.2019.8762084.
    [12]
    NGUYEN K K, DUONG T Q, VIEN N A, et al. Distributed deep deterministic policy gradient for power allocation control in D2D-based V2V communications[J]. IEEE Access, 2019, 7: 164533–164543. doi: 10.1109/ACCESS.2019.2952411
    [13]
    DU Jianbo, ZHAO Liqiang, FENG Jie, et al. Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee[J]. IEEE Transactions on Communications, 2018, 66(4): 1594–1608. doi: 10.1109/TCOMM.2017.2787700
    [14]
    AMIRI R., ALMASI M A, ANDREWS J G, et al. Reinforcement learning for self organization and power control of two-tier heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 3933–3947. doi: 10.1109/TWC.2019.2919611
    [15]
    LOWE R, WU Yi, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6379–6390.
    [16]
    YANG Bo, SHEN Yanyan, HAN Qiaoni, et al. Energy-efficient resource allocation for time-varying OFDMA relay systems with hybrid energy supplies[J]. IEEE Systems Journal, 2018, 12(1): 702–713. doi: 10.1109/JSYST.2016.2551319
    [17]
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1201) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return