Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Yuxia BIE, Xiuqi ZHANG, Yupeng WANG, Zhi HU. Research on Virtual Channel Hybrid Scheduling Algorithm in Advanced Orbit System[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1913-1921. doi: 10.11999/JEIT200238
Citation: Yuxia BIE, Xiuqi ZHANG, Yupeng WANG, Zhi HU. Research on Virtual Channel Hybrid Scheduling Algorithm in Advanced Orbit System[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1913-1921. doi: 10.11999/JEIT200238

Research on Virtual Channel Hybrid Scheduling Algorithm in Advanced Orbit System

doi: 10.11999/JEIT200238
Funds:  The National Natural Science Foundation of China (61901284)
  • Received Date: 2020-04-07
  • Rev Recd Date: 2020-12-02
  • Available Online: 2020-12-22
  • Publish Date: 2021-07-10
  • In view of transporting various spatial data service types, an Advanced Orbiting Systems (AOS) virtual channel hybrid scheduling model is established based on AOS virtual channel multiplexing technology. In the model, a algorithm based on genetic-particle swarm ordering is proposed for asynchronous Virtual Channel (VC). Service priority, scheduling delay urgency and frame remaining urgency are the key constraints that affect the scheduling order of VC.The algorithm establishes the genetic-particle swarm fitness function model according to the constraints, and further enables the particles in the particle swarm to update the position according to the evolution operator of the genetic algorithm, thereby finding the optimal asynchronous VC scheduling sequence.At the same time, a dynamic weighted round-robin scheduling algorithm is designed for the synchronous VC, so that each synchronous VC occupies the physical channel according to the weighting factor and the allocated number of time slots. Simulation results show that the VC hybrid scheduling algorithm in this paper takes into account the priority of asynchronous data, the isochronism of synchronous data, and the urgency of VIP data. It has a smaller average scheduling delay and less frame remaining, so the algorithm meets the transmission requirements of different services.
  • loading
  • [1]
    ZHANG Cuitao and HE Xiongwen. Research and application of consultative committee for space data systems wireless communications standards for spacecraft[J]. World Academy of Science, Engineering and Technology International Journal of Electronics and Communication Engineering, 2017, 11(11): 1148–1151.
    [2]
    戴昌昊, 张德智, 胡倩, 等. 一种基于CCSDS AOS协议的分包遥测调度算法[J]. 测控技术, 2017, 36(9): 47–49, 53. doi: 10.3969/j.issn.1000-8829.2017.09.011

    DAI Changhao, ZHANG Dezhi, HU Qian, et al. A packet telemetry scheduling algorithm based on CCSDS AOS protocol[J]. Measurement &Control Technology, 2017, 36(9): 47–49, 53. doi: 10.3969/j.issn.1000-8829.2017.09.011
    [3]
    CCSDS. CCSDS 732.0-B-2 AOS space data link protocol[S]. Washington, USA: CCSDS, 2006: 7.
    [4]
    CCSDS. CCSDS 912.3-B-2 Space link extension—forward space packet service specification[S]. Washington, USA: CCSDS, 2010.
    [5]
    LIU Qingli, PAN Chengsheng, WANG Guoren, et al. CCSDS advanced orbiting systems, data links protocol: Study on virtual channels scheduling algorithm[C]. The 2008 8th IEEE International Conference on Intelligent Systems Design and Applications, Kaohsiung, China, 2008: 351–355. doi: 10.1109/ISDA.2008.158.
    [6]
    RIHA A P and OKINO C. An advanced orbiting systems approach to quality of service in space-based intelligent communication networks[C]. 2006 IEEE Aerospace Conference, Big Sky, USA, 2006: 1–11. doi: 10.1109/AERO.2006.1655837.
    [7]
    刘立士, 李清凡, 田野, 等. 基于帧紧迫度的边界可移动虚拟信道调度算法[J]. 科学技术与工程, 2014, 14(17): 97–103. doi: 10.3969/j.issn.1671-1815.2014.17.019

    LIU Lishi, LI Qingfan, TIAN Ye, et al. A virtual channels scheduling algorithm of moving boundary based on frame urgency[J]. Science Technology and Engineering, 2014, 14(17): 97–103. doi: 10.3969/j.issn.1671-1815.2014.17.019
    [8]
    GUPTA I, KUMAR M S, JANA P K. Efficient workflow scheduling algorithm for cloud computing system: A dynamic priority-based approach[J]. Arabian Journal for Science and Engineering, 2018, 43(12): 7945–7960. doi: 10.1007/s13369-018-3261-8
    [9]
    季伟东, 孙小晴, 林平, 等. 基于非线性降维的自然计算方法[J]. 电子与信息学报, 2020, 42(8): 1982–1989. doi: 10.11999/JEIT190623

    JI Weidong, SUN Xiaoqing, LIN Ping, et al. Natural computing method based on nonlinear dimension reduction[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1982–1989. doi: 10.11999/JEIT190623
    [10]
    JIA Zhaohong, WANG Yan, WU Chao, et al. Multi-objective energy-aware batch scheduling using ant colony optimization algorithm[J]. Computers & Industrial Engineering, 2019, 131: 41–56.
    [11]
    MARINI F and WALCZAK B. Particle Swarm Optimization (PSO). A tutorial[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153–165.
    [12]
    ZHANG Yudong, WANG Shuihua, and JI Genlin. A comprehensive survey on particle swarm optimization algorithm and its applications[J]. Mathematical Problems in Engineering, 2015, 2015: 931256.
    [13]
    唐红亮, 吴柏林, 胡旺, 等. 基于粒子群优化的地震应急物资多目标调度算法[J]. 电子与信息学报, 2020, 42(3): 737–745. doi: 10.11999/JEIT190277

    TANG Hongliang, WU Bolin, HU Wang, el al. Earthquake emergency resource multiobjective schedule algorithm based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 737–745. doi: 10.11999/JEIT190277
    [14]
    唐巍, 高峰. 考虑用户满意度的户用型微电网日前优化调度[J]. 高电压技术, 2017, 43(1): 140–148.

    TANG Wei and GAO Feng. Optimal operation of household microgrid day-ahead energy considering user satisfaction[J]. High Voltage Engineering, 2017, 43(1): 140–148.
    [15]
    刘经浩, 贺蓉, 李仁发, 等. 一种基于实时电价的HEMS家电最优调度方法[J]. 计算机应用研究, 2015, 32(1): 132–137, 160. doi: 10.3969/j.issn.1001-3695.2015.01.030

    LIU Jinghao, HE Rong, LI Renfa, et al. Optimal scheduling model for home energy management system based on real-time electricity pricing[J]. Application Research of Computers, 2015, 32(1): 132–137, 160. doi: 10.3969/j.issn.1001-3695.2015.01.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (670) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return