Advanced Search
Volume 43 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Xiangyang DUAN, Yu XIN, Tong BAO, Jian HUA. A Candidate Waveform Scheme for High-Frequency Scenarios[J]. Journal of Electronics & Information Technology, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236
Citation: Xiangyang DUAN, Yu XIN, Tong BAO, Jian HUA. A Candidate Waveform Scheme for High-Frequency Scenarios[J]. Journal of Electronics & Information Technology, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236

A Candidate Waveform Scheme for High-Frequency Scenarios

doi: 10.11999/JEIT200236
Funds:  The Key-Area Research and Development Program of Guangdong Province (2019B010157001)
  • Received Date: 2020-04-03
  • Rev Recd Date: 2020-10-20
  • Available Online: 2020-11-07
  • Publish Date: 2021-01-15
  • A candidate waveform scheme is designed to deal with the main problems in the high-frequency scenarios (>52.6 GHz) such as relatively large path loss, low efficiency of power amplifier and high phase noise. This candidate waveform scheme designs the enhanced fundamental symbol structure, the enhanced transmitter and the receiver structure, and tail sequence length variable schemes. Compared with the 5G waveform DFT-s-OFDM, the proposed candidate waveform scheme improves the spectrum efficiency. The simulation results show that the candidate waveform scheme has lower peak-to-average power ratio, better phase noise estimation and compensation effect, and lower out-of-band leakage.
  • loading
  • POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G Wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view[J]. IEEE Access, 2018, 6: 55765–55779. doi: 10.1109/ACCESS.2018.2872781
    3GPP R1–1803552 CR to 38.211 capturing the Jan18 ad-hoc and RAN1#92 meeting agreements[S]. 2018.
    赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
    WELLS J. Faster than fiber: The future of multi-G/s wireless[J]. IEEE Microwave Magazine, 2009, 10(3): 104–112. doi: 10.1109/MMM.2009.932081
    陈亮, 余少华. 6G移动通信发展趋势初探(特邀)[J]. 光通信研究, 2019, 45(4): 1–8.

    CHEN Liang and YU Shaohua. Preliminary study on the trend of 6G mobile communication[J]. Study on Optical Communications, 2019, 45(4): 1–8.
    SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253

    LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics &Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253
    邢金强, 马帅, 肖善鹏. 高频段5G终端射频实现与挑战[J]. 移动通信, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003

    XING Jinqiang, MA Shuai, and XIAO Shanpeng. Implementation and challenge of high-frequency 5G terminal[J]. Mobile Communications, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003
    CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35.
    LEVINBOOK Y, EZRI D, and MELZER E. Low-PAPR OFDM-based waveform for fifth-generation cellular communications[C]. 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 2017: 187–192. doi: 10.1109/COMCAS.2017.8244846.
    KIM J, YUN Y H, KIM C, et al. Minimization of PAPR for DFT-Spread OFDM with BPSK symbols[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11746–11758. doi: 10.1109/TVT.2018.2874688
    KIM J, YUN Y H, KIM C, et al. A further PAPR reduction for π/2 BPSK in 5G new radio[C]. The 88th IEEE Vehicular Technology Conference, Chicago, USA, 2018. doi: 10.1109/VTCFall.2018.8690859.
    SIBEL J C. Pilot-based phase noise tracking for uplink DFT-s-OFDM in 5G[C]. The 25th International Conference on Telecommunications (ICT), St. Malo, France, 2018: 52–56.
    3GPP TS38.211 Technical specification group radio access network; NR; Physical channels and modulation[S]. 2016.
    BOONKAJAY A and ADACHI F. Single-carrier transmission with frequency-domain based code-division multi-access[C]. The 20th Asia-Pacific Conference on Communication, Pattaya, Thailand, 2014: 233–238.
    3GPP TR38.901 Technical specification group radio access networks. Study on channel model for frequencies from 0.5 to 100 GHz[S]. 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (815) PDF downloads(407) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return