Citation: | Xiangyang DUAN, Yu XIN, Tong BAO, Jian HUA. A Candidate Waveform Scheme for High-Frequency Scenarios[J]. Journal of Electronics & Information Technology, 2021, 43(1): 60-67. doi: 10.11999/JEIT200236 |
POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G Wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view[J]. IEEE Access, 2018, 6: 55765–55779. doi: 10.1109/ACCESS.2018.2872781
|
3GPP R1–1803552 CR to 38.211 capturing the Jan18 ad-hoc and RAN1#92 meeting agreements[S]. 2018.
|
赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
|
WELLS J. Faster than fiber: The future of multi-G/s wireless[J]. IEEE Microwave Magazine, 2009, 10(3): 104–112. doi: 10.1109/MMM.2009.932081
|
陈亮, 余少华. 6G移动通信发展趋势初探(特邀)[J]. 光通信研究, 2019, 45(4): 1–8.
CHEN Liang and YU Shaohua. Preliminary study on the trend of 6G mobile communication[J]. Study on Optical Communications, 2019, 45(4): 1–8.
|
SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
|
刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253
LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics &Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253
|
邢金强, 马帅, 肖善鹏. 高频段5G终端射频实现与挑战[J]. 移动通信, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003
XING Jinqiang, MA Shuai, and XIAO Shanpeng. Implementation and challenge of high-frequency 5G terminal[J]. Mobile Communications, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003
|
CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35.
|
LEVINBOOK Y, EZRI D, and MELZER E. Low-PAPR OFDM-based waveform for fifth-generation cellular communications[C]. 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 2017: 187–192. doi: 10.1109/COMCAS.2017.8244846.
|
KIM J, YUN Y H, KIM C, et al. Minimization of PAPR for DFT-Spread OFDM with BPSK symbols[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11746–11758. doi: 10.1109/TVT.2018.2874688
|
KIM J, YUN Y H, KIM C, et al. A further PAPR reduction for π/2 BPSK in 5G new radio[C]. The 88th IEEE Vehicular Technology Conference, Chicago, USA, 2018. doi: 10.1109/VTCFall.2018.8690859.
|
SIBEL J C. Pilot-based phase noise tracking for uplink DFT-s-OFDM in 5G[C]. The 25th International Conference on Telecommunications (ICT), St. Malo, France, 2018: 52–56.
|
3GPP TS38.211 Technical specification group radio access network; NR; Physical channels and modulation[S]. 2016.
|
BOONKAJAY A and ADACHI F. Single-carrier transmission with frequency-domain based code-division multi-access[C]. The 20th Asia-Pacific Conference on Communication, Pattaya, Thailand, 2014: 233–238.
|
3GPP TR38.901 Technical specification group radio access networks. Study on channel model for frequencies from 0.5 to 100 GHz[S]. 2017.
|