Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Yu SHEN, Qian YANG, Xiaopeng CHEN, Yubin YUAN, Hongguo ZHANG, Lin WANG. Structural Refinement of Neural Style Transfer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2361-2369. doi: 10.11999/JEIT200211
Citation: Yu SHEN, Qian YANG, Xiaopeng CHEN, Yubin YUAN, Hongguo ZHANG, Lin WANG. Structural Refinement of Neural Style Transfer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2361-2369. doi: 10.11999/JEIT200211

Structural Refinement of Neural Style Transfer

doi: 10.11999/JEIT200211
Funds:  The National Natural Science Foundation of China (61861025)
  • Received Date: 2020-03-25
  • Rev Recd Date: 2021-01-30
  • Available Online: 2021-07-21
  • Publish Date: 2021-08-10
  • In the process of style transfer, stylized image details are blurred when style elements are evenly distributed in the whole image. Besides, the existing style transfer methods mainly focus on the diversity of transferred styles, ignoring the content structure and details of the stylized images. To this end, a neural style transfer method of structure refinement is proposed, which refines the content structure of stylized image by adding edge detection network to extract the contour edge of the content image to highlight the main objectives in the content image. By replacing the larger convolution kernel of the conventional convolution layer in the transfer network, the model parameters of the transfer network are reduced, and the transfer speed is improved, while ensuring that the original receptive field is unchanged. Through the adaptive normalization of the conventional convolution layer, the structure of the generated image is refined by using the adaptive normalization to detect certain style of stroke in the feature channel to produce high nonlinearity while preserving the spatial structure of the content image. The method can refine the overall structure of the stylized image, make the stylized image more coherent, that the stylized image details are blurred due to the uniform distribution of style texture, and improve the quality of image style transfer.
  • loading
  • [1]
    KYPRIANIDIS J E, COLLOMOSSE J, WANG Tinghuai, et al. State of the “Art”: a taxonomy of artistic stylization techniques for images and video[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(5): 866–885. doi: 10.1109/TVCG.2012.160
    [2]
    袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135

    YUAN Ye, JIA Kebin, and LIU Pengyu. Multi-context autoencoders for multivariate medical signals based on deep convolutional neural networks[J]. Journal of Electronics &Information Technology, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135
    [3]
    GATYS L A, ECKER A S, and BETHGE M. A neural algorithm of artistic style[J]. arXiv preprint arXiv: 1508.06576, 2015.
    [4]
    GATYS L A, ECKER A S, and BETHGE M. Image style transfer using convolutional neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2414–2423. doi: 10.1109/cvpr.2016.265.
    [5]
    LUAN Fujun, PARIS S, SHECHTMAN E, et al. Deep photo style transfer[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6997–7005. doi: 10.1109/CVPR.2017.740.
    [6]
    HUANG Xun and BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 1510–1519. doi: 10.1109/iccv.2017.167.
    [7]
    LI Chuan and WAND M. Combining Markov random fields and convolutional neural networks for image synthesis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2479–2486. doi: 10.1109/CVPR.2016.272.
    [8]
    DUMOULIN V, SHLENS J, and KUDLUR M. A learned representation for artistic style[J]. arXiv preprint arXiv: 1610.07629, 2016.
    [9]
    CHEN Yang, LAI Yukun, and LIU Yongjing. CartoonGAN: generative adversarial networks for photo cartoonization[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9465–9474. doi: 10.1109/CVPR.2018.00986.
    [10]
    JOHNSON J, ALEXANDRE A, and LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 694–711. doi: 10.1007/978-3-319-46475-6_43.
    [11]
    王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    [12]
    CHEN Chunfu, FAN Quanfu, MALLINAR N, et al. Big-little net: an efficient multi-scale feature representation for visual and speech recognition[J]. arXiv preprint arXiv: 1807.03848, 2018.
    [13]
    WANG Xin, YU F, DOU Ziyi, et al. SkipNet: Learning dynamic routing in convolutional networks[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 420–436. doi: 10.1007/978-3-030-01261-8_25.
    [14]
    LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939–1946. doi: 10.1109/TPAMI.2018.2878849
    [15]
    XIE Saining and TU Zhuowen. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1): 3–18. doi: 10.1007/s11263-017-1004-z
    [16]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. doi: 10.1007/978-3-319-10602-1_48.
    [17]
    SAIF M M and SVETLANA K. WikiArt emotions: an annotated dataset of emotions evoked by art[C]. The 11th International Conference on Language Resources and Evaluation, Miyazaki, Japan, 2018: 1225–1238.
    [18]
    LIU Xiaochang, CHENG Mingming, LAI Yukun, et al. Depth-aware neural style transfer[C]. The Symposium on Non-Photorealistic Animation and Rendering, California, USA, 2017: 4. doi: 10.1145/3092919.3092924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (1068) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return