Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Junrong YAN, Renjie YE, Hua ZHONG, Xianyang JIANG. Twice Labels Number Estimation Algorithm Based on Gaussian Fitting and Chebyshev Inequality[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1893-1899. doi: 10.11999/JEIT200209
Citation: Junrong YAN, Renjie YE, Hua ZHONG, Xianyang JIANG. Twice Labels Number Estimation Algorithm Based on Gaussian Fitting and Chebyshev Inequality[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1893-1899. doi: 10.11999/JEIT200209

Twice Labels Number Estimation Algorithm Based on Gaussian Fitting and Chebyshev Inequality

doi: 10.11999/JEIT200209
Funds:  Hangzhou Dianzi University Research Innovation Fund 2019, Zhejiang Provincial Public Technology Application Research Program(2017C31055)
  • Received Date: 2020-03-25
  • Rev Recd Date: 2020-12-06
  • Available Online: 2020-12-16
  • Publish Date: 2021-07-10
  • In order to solve the problems of large estimation error, prolonged identification and high time complexity, which exist in tag quantity estimation algorithm in Radio Frequency IDentification (RFID) system, The Twice Labels Number Estimation algorithm based on Gaussian fitting and Chebyshev inequality (TLNEGC) is proposed. Firstly, a collision model is established based on the relationship between the collision factor and the collision time slot ratio, and a Gaussian estimation model is obtained by fitting the Gaussian function to the discrete data points. Afterward, the Gaussian estimation model is used to initially estimate the number of labels, and then according to the results of the initial estimation, judge whether a second estimation is required. The second estimation is performed by using Chebyshev's inequality to search the estimation interval twice to obtain the best estimate. The MATLAB simulation analysis indicates that the average estimation error and total time consumption of the TLNEGC algorithm are significantly lower than those of existing high-precision label estimation algorithms, and it also has lower time complexity and higher stability.
  • loading
  • [1]
    KHADKA G, AREFIN M S, and KARMAKAR N C. Using Punctured Convolution Coding (PCC) for error correction in chipless RFID tag measurement[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(7): 701–704. doi: 10.1109/LMWC.2020.2994189
    [2]
    BUFFI A, MOTRONI A, NEPA P, et al. A SAR-based measurement method for passive-tag positioning with a flying UHF-RFID reader[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(3): 845–853. doi: 10.1109/TIM.2018.2857045
    [3]
    袁莉芬, 杜余庆, 何怡刚, 等. 可并行识别的分组动态帧时隙ALOHA标签防碰撞算法[J]. 电子与信息学报, 2018, 40(4): 944–950. doi: 10.11999/JEIT170654

    YUAN Lifen, DU Yuqing, HE Yigang, et al. Grouped dynamic frame slotted ALOHA tag anti-collision algorithm based on parallelizable identification[J]. Journal of Electronics &Information Technology, 2018, 40(4): 944–950. doi: 10.11999/JEIT170654
    [4]
    BABICH F and COMISSO M. Impact of segmentation and capture on slotted aloha systems exploiting interference cancellation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2878–2892. doi: 10.1109/TVT.2019.2894705
    [5]
    JIA Dia, FEI Zesong, and ZHANG Yasheng. Irregular repetition slotted ALOHA with total transmit power limitation[J]. Information Sciences, 2019, 64(2): 129301. doi: 10.1007/s11432-019-2728-x
    [6]
    FERREIRA H P A, ASSIS F M, and SERRES A R. Novel RFID method for faster convergence of tag estimation on dynamic frame size ALOHA algorithms[J]. IET Communications, 2019, 13(9): 1218–1224. doi: 10.1049/iet-com.2018.5506
    [7]
    NGUYEN C T, NGUYEN V D, and PHAM A T. Tag cardinality estimation using expectation-maximization in ALOHA-Based RFID systems with capture effect and detection error[J]. IEEE Wireless Communications Letters, 2019, 8(2): 636–639. doi: 10.1109/LWC.2018.2890650
    [8]
    席雯. 捕获效应下RFID防碰撞算法的研究与应用[D]. [硕士论文], 北京交通大学, 2018.

    XI Wen. Research and application of RFID anti-collision algorithm coping with capture effect[D]. [Master dissertation], Beijing Jiaotong University, 2018.
    [9]
    WANG Zuliang, ZHANG Ting, FAN Linyan, et al. Dynamic frame-slotted ALOHA anti-collision algorithm in RFID based on non-linear estimation[J]. International Journal of Electronics, 2019, 106(11): 1769–1783. doi: 10.1080/00207217.2019.1625968
    [10]
    KUMAR D, MONDAL S, KARUPPUSWAMI S, et al. Harmonic RFID communication using conventional UHF system[J]. IEEE Journal of Radio Frequency Identification, 2019, 3(4): 227–235. doi: 10.1109/JRFID.2019.2925527
    [11]
    ALVAREZ-NARCIANDI G, MOTRONI A, PINO M R, et al. A UHF-RFID gate control system based on a recurrent neural network[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(11): 2330–2334. doi: 10.1109/LAWP.2019.2929416
    [12]
    SHAHZAD M and LIU A X. Fast and accurate estimation of RFID tags[J]. IEEE/ACM Transactions on Networking, 2014, 23(1): 241–254. doi: 10.1109/TNET.2014.2298039
    [13]
    HAMMAD M, SHAHID N, NATHIRULLA M, et al. Improved efficient RFID tag estimation scheme[J]. International Journal of Computer Applications, 2012, 47(17): 16–19.
    [14]
    CHOI S S and SANGKYUNG K. A dynamic framed slotted ALOHA algorithm using collision factor for RFID identification[J]. IEICE Transactions on Communications, 2009, E92(3): 1023–1026. doi: 10.1587/transcom.E92.B.1023
    [15]
    VOGT H. Efficient object identification with passive RFID tags[C]. The International Conference on Pervasive Computing, Zurich, Switzerland, 2002. doi: 10.1007/3-540-45866-2_9.
    [16]
    CHEN W T. An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA[J]. IEEE Transactions on Automation Science and Engineering, 2009, 6(1): 9–15. doi: 10.1109/TASE.2008.917093
    [17]
    丁建立, 韩宇超, 王家亮. 基于粗精二次估计的RFID标签数目估算方法[J]. 计算机应用, 2017, 37(9): 2722–2727. doi: 10.11772/j.issn.1001-9081.2017.09.2722

    DING Jianli, HAN Yuchao, and WANG Jialiang. Estimation method for RFID tags based on rough and fine double estimation[J]. Journal of Computer Applications, 2017, 37(9): 2722–2727. doi: 10.11772/j.issn.1001-9081.2017.09.2722
    [18]
    钟兆根, 于柯远, 孙雪丽. 基于序贯蒙特卡罗的非同步长码DS-CDMA信号扩频码及信息序列联合估计[J]. 电子与信息学报, 2019, 41(6): 1365–1373. doi: 10.11999/JEIT180157

    ZHONG Zhaogen, YU Keyuan, and SUN Xueli. Joint estimation of spreading codes and information sequences for asynchronous long code DS-CDMA signals based on sequential monte carlo[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1365–1373. doi: 10.11999/JEIT180157
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1014) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return