Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Dong WEI, Bochen DONG, Yiqing LIU. Design and Hardware Implementation of Image Recognition System Based on Improved Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1828-1833. doi: 10.11999/JEIT200202
Citation: Dong WEI, Bochen DONG, Yiqing LIU. Design and Hardware Implementation of Image Recognition System Based on Improved Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1828-1833. doi: 10.11999/JEIT200202

Design and Hardware Implementation of Image Recognition System Based on Improved Neural Network

doi: 10.11999/JEIT200202
Funds:  The High Level Innovation Team Construction Project of Beijing Municipal Universities (IDHT20190506), The National Natural Science Foundation of China (61871020), The Key Science and Technology Plan Project of Beijing Municipal Education Commission of China (KZ201810016019)
  • Received Date: 2020-03-24
  • Rev Recd Date: 2020-09-23
  • Available Online: 2020-12-09
  • Publish Date: 2021-07-10
  • To solve the problem that most existing image recognition systems are implemented in software which can not utilize the parallel computing power of neural networks, this paper proposes a FPGA image recognition system based on improved RBF neural network hardware. The multiplication operation in the neural networks is complex and inconvenient for hardware implementation. Furthermore, a sort circuit based on bit comparison is designed to solve the problem of fast sorting of a large number of data. Then, a multi-target image recognition application system is developed. The feature extraction part in the developed system is implemented by FPGA, and the image recognition part is implemented by ASIC circuit. The experimental results show that the average recognition time of the improved RBF neural network algorithm proposed is 50% shorter than that of LeNet-5, AlexNet and VGG16, and the time for the developed hardware system to recognize 10000 sample pictures is 165μs, which is reduced by about 60% compared with 426.6μs required by a DSP chip system.
  • loading
  • [1]
    李国良, 周煊赫, 孙佶, 等. 基于机器学习的数据库技术综述[J]. 计算机学报, 2020, 43(11): 2019–2049.

    LI Guoliang, ZHOU Xuanhe, SUN Ji, et al. A survey of machine learning based database techniques[J]. Chinese Journal of Computers, 2020, 43(11): 2019–2049.
    [2]
    刘方园, 王水花, 张煜东. 深度置信网络模型及应用研究综述[J]. 计算机工程与应用, 2018, 54(1): 11–18, 47. doi: 10.3778/j.issn.1002-8331.1711-0028

    LIU Fangyuan, WANG Shuihua, and ZHANG Yudong. Review of deep confidence network model and application research[J]. Computer Engineering and Applications, 2018, 54(1): 11–18, 47. doi: 10.3778/j.issn.1002-8331.1711-0028
    [3]
    LIANG Tian and AFZEL N. Software reliability prediction using recurrent neural network with Bayesian regularization[J]. International Journal of Neural Systems, 2004, 14(3): 165–174. doi: 10.1142/S0129065704001966
    [4]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [5]
    SABOUR S, FROSST N, and HINTON G E. Dynamic routing between capsules[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 3856–3866.
    [6]
    任源, 潘俊, 刘京京, 等. 人工智能芯片的研究进展[J]. 微纳电子与智能制造, 2019, 1(2): 20–34.

    REN Yuan, PAN Jun, LIU Jingjing, et al. Overview of artificial intelligence chip development[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(2): 20–34.
    [7]
    秦华标, 曹钦平. 基于FPGA的卷积神经网络硬件加速器设计[J]. 电子与信息学报, 2019, 41(11): 2599–2605. doi: 10.11999/JEIT190058

    QIN Huabiao and CAO Qinping. Design of convolutional neural networks hardware acceleration based on FPGA[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2599–2605. doi: 10.11999/JEIT190058
    [8]
    韩栋, 周聖元, 支天, 等. 智能芯片的评述和展望[J]. 计算机研究与发展, 2019, 56(1): 7–22. doi: 10.7544/issn1000-1239.2019.20180693

    HAN Dong, ZHOU Shengyuan, ZHI Tian, et al. A survey of artificial intelligence chip[J]. Journal of Computer Research and Development, 2019, 56(1): 7–22. doi: 10.7544/issn1000-1239.2019.20180693
    [9]
    王巍, 周凯利, 王伊昌, 等. 基于快速滤波算法的卷积神经网络加速器设计[J]. 电子与信息学报, 2019, 41(11): 2578–2584. doi: 10.11999/JEIT190037

    WANG Wei, ZHOU Kaili, WANG Yichang, et al. Design of convolutional neural networks accelerator based on fast filter algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2578–2584. doi: 10.11999/JEIT190037
    [10]
    伍家松, 达臻, 魏黎明, 等. 基于分裂基-2/(2a)FFT算法的卷积神经网络加速性能的研究[J]. 电子与信息学报, 2017, 39(2): 285–292. doi: 10.11999/JEIT160357

    WU Jiasong, DA Zhen, WEI Liming, et al. Acceleration performance study of convolutional neural network based on split-radix-2/(2a) FFT algorithms[J]. Journal of Electronics &Information Technology, 2017, 39(2): 285–292. doi: 10.11999/JEIT160357
    [11]
    张烨, 许艇, 冯定忠, 等. 基于难分样本挖掘的快速区域卷积神经网络目标检测研究[J]. 电子与信息学报, 2019, 41(6): 1496–1502. doi: 10.11999/JEIT180702

    ZHANG Ye, XU Ting, FENG Dingzhong, et al. Research on faster RCNN object detection based on hard example mining[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1496–1502. doi: 10.11999/JEIT180702
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (1122) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return