| Citation: | Hongmei TANG, Mengyue BAI, Liying HAN, Chunyang LIANG. Image Saliency Detection Based on Background Constraint of Low Rank and Multi-cue Propagation[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1432-1440. doi: 10.11999/JEIT200193 | 
 
	                | [1] | DENG Cheng, YANG Xu, NIE Feiping, et al. Saliency detection via a multiple self-weighted graph-based manifold ranking[J]. IEEE Transactions on Multimedia, 2020, 22(4): 885–896. doi:  10.1109/TMM.2019.2934833 | 
| [2] | JAEMSIRI J, TITIJAROONROJ T, and RUNGRATTANAUBOL J. Modified scale-space analysis in frequency domain based on adaptive multiscale Gaussian filter for saliency detection[C]. The 2019 16th International Joint Conference on Computer Science and Software Engineering, Chonburi, Thailand, 2019: 218–223. doi: 10.1109/JCSSE.2019.8864211. | 
| [3] | WANG Chengjia, DONG Shizhou, ZHAO Xiaofeng, et al. SaliencyGAN: Deep learning semisupervised salient object detection in the fog of IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2667–2676. doi:  10.1109/TII.2019.2945362 | 
| [4] | SRIVASTAVA G and SRIVASTAVA R. An efficient modification of generalized gradient vector flow using directional contrast for salient object detection and intelligent scene analysis[J]. Multimedia Tools and Applications, 2020, 79(19): 13599–13619. doi:  10.1007/s11042-020-08609-y | 
| [5] | HUO Shuwei, ZHOU Yuan, XIANG Wei, et al. Semisupervised learning based on a novel iterative optimization model for saliency detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(1): 225–241. doi:  10.1109/TNNLS.2018.2809702 | 
| [6] | 李炜, 李全龙, 刘政怡. 基于加权的K近邻线性混合显著性目标检测[J]. 电子与信息学报, 2019, 41(10): 2442–2449. doi:  10.11999/JEIT190093 LI Wei, LI Quanlong, LIU Zhengyi, et al. Salient object detection using weighted k-nearest neighbor linear blending[J]. Journal of Electronics and Information Technology, 2019, 41(10): 2442–2449. doi:  10.11999/JEIT190093 | 
| [7] | WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 29–42. doi: 10.1007/978-3-642-33712-3_3. | 
| [8] | TANG Chang, WANG Pichao, ZHANG Changqing, et al. Salient object detection via weighted low rank matrix recovery[J]. IEEE Signal Processing Letters, 2017, 24(4): 490–494. doi:  10.1109/lsp.2016.2620162 | 
| [9] | 张文明, 姚振飞, 高雅昆, 等. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J]. 电子与信息学报, 2020, 42(5): 1201–1208. doi:  10.11999/JEIT190229 ZHANG Wenming, YAO Zhenfei, GAO Yakun, et al. A deep convolutional network for saliency object detection with balanced accuracy and high efficiency[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1201–1208. doi:  10.11999/JEIT190229 | 
| [10] | YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166–3173. doi: 10.1109/CVPR.2013.407. | 
| [11] | FU Keren, GU I Y H, GONG Chen, et al. Robust manifold-preserving diffusion-based saliency detection by adaptive weight construction[J]. Neurocomputing, 2016, 175: 336–347. doi:  10.1016/j.neucom.2015.10.066 | 
| [12] | TAO Dapeng, CHENG Jun, SONG Mingli, et al. Manifold ranking-based matrix factorization for saliency detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1122–1134. doi:  10.1109/TNNLS.2015.2461554 | 
| [13] | GONG Chen, TAO Dacheng, LIU Wei, et al. Saliency propagation from simple to difficult[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2531–2539. doi: 10.1109/cvpr.2015.7298868. | 
| [14] | ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi:  10.1109/tpami.2012.120 | 
| [15] | ZHANG Jun, WANG Meng, ZHANG Shengping, et al. Spatiochromatic context modeling for color saliency analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1177–1189. doi:  10.1109/tnnls.2015.2464316 | 
