Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Jianrong BAO, Yunxuan LIN, Chao LIU, Bin JIANG, Fang ZHU, Jianhai HE. Decision Threshold-aided Fast Z-Forward in Wireless Multirelay Communications[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1315-1322. doi: 10.11999/JEIT200183
Citation: Jianrong BAO, Yunxuan LIN, Chao LIU, Bin JIANG, Fang ZHU, Jianhai HE. Decision Threshold-aided Fast Z-Forward in Wireless Multirelay Communications[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1315-1322. doi: 10.11999/JEIT200183

Decision Threshold-aided Fast Z-Forward in Wireless Multirelay Communications

doi: 10.11999/JEIT200183
Funds:  Zhejiang Provincial Science and Technology Plan Project (LGG18F010011, LGG19F010004), The Fundamental Research Funds for the Provincial Universities of Zhejiang (GK209907299001-003), The National Natural Science Foundation of China (U1809201), Zhejiang Provincial National Natural Science Foundation (LY20F010010)
  • Received Date: 2020-03-20
  • Rev Recd Date: 2020-11-20
  • Available Online: 2020-11-25
  • Publish Date: 2021-05-18
  • In consideration of improper power allocation and insufficient relay selection in the current Z-Forward (ZF) scheme, an efficient Decision Threshold-aided Fast Z-Forward (DT-FZF) scheme is proposed to improve power and transmission efficiency. When the absolute value of the Log-Likelihood Ratio (LLR) of a source-relay reception is less than the decision threshold, the relay remains quiet. Otherwise, it directly sends the truncated LLR to the destination. In addition, the proposed DT-FZF scheme incorporates the Amplify-Forward(AF), Decode-Forward(DF), Piecewise-Forward(PF) and ZF schemes, all of which can be the special case of the proposed scheme. At a Bit Error Rate (BER) is of 10–3, the DT-FZF scheme outperforms the ZF scheme by approximately 0.8 dB in a three-relay system.
  • loading
  • [1]
    SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity. Part I. System description[J]. IEEE Transactions on Communications, 2003, 51(11): 1927–1938. doi: 10.1109/TCOMM.2003.818096
    [2]
    SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity. Part II. Implementation aspects and performance analysis[J]. IEEE Transactions on Communications, 2003, 51(11): 1939–1948. doi: 10.1109/TCOMM.2003.819238
    [3]
    VAN DER MEULEN E. A survey of multi-way channels in information theory: 1961–1976[J]. IEEE Transactions on Information Theory, 1977, 23(1): 1–37. doi: 10.1109/TIT.1977.1055652
    [4]
    COVER T and GAMAL A E. Capacity theorems for the relay channel[J]. IEEE Transactions on Information Theory, 1979, 25(5): 572–584. doi: 10.1109/TIT.1979.1056084
    [5]
    LANEMAN J N, TSE D N C, and WORNELL G W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior[J]. IEEE Transactions on Information Theory, 2004, 50(2): 3062–3080. doi: 10.1109/TIT.2004.838089
    [6]
    WANG Ning, LIN Xuehong, WANG Junyi, et al. Cooperative diversity through network turbo-coding[C]. 2007 International Conference on Communications, Circuits and Systems, Kokura, Japan, 2007: 92–94. doi: 10.1109/ICCCAS.2007.6247581.
    [7]
    ALVES H and SOUZA R D. Selective decode-and-forward using fixed relays and packet accumulation[J]. IEEE Communications Letters, 2011, 15(7): 707–709. doi: 10.1109/LCOMM.2011.050311.110416
    [8]
    ELSAID L, RANJBAR M, RAYMONDI N, et al. Full-duplex decode-and-forward relaying: Secrecy rates and optimal power allocation[C]. 2017 IEEE 85th Vehicular Technology Conference, Sydney, Australia, 2017: 1–6. doi: 10.1109/VTCSpring.2017.8108359.
    [9]
    LIU Yingting, PAN Zhengwei, SHEN Jianmei, et al. Outage performance analysis for a DF based hybrid scheme over log-normal fading channels[C]. 2019 IEEE/CIC International Conference on Communications Workshops in China, Changchun, China, 2019: 114–119. doi: 10.1109/ICCChinaW.2019.8849966.
    [10]
    LIU Tianxi, SONG Lingyang, LI Yonghui, et al. Performance analysis of hybrid relay selection in cooperative wireless systems[J]. IEEE Transactions on Communications, 2012, 60(3): 779–788. doi: 10.1109/TCOMM.2012.011312.110015
    [11]
    RIBEIRO A, CAI Xiaodong, and GIANNAKIS G B. Symbol error probabilities for general Cooperative links[J]. IEEE Transactions on Wireless Communications, 2005, 4(3): 1264–1273. doi: 10.1109/TWC.2005.846989
    [12]
    徐少毅, 张鹏. D2D协作通信网络中基于社交信息的中继选择和功率分配[J]. 电子与信息学报, 2017, 39(5): 1142–1149. doi: 10.11999/JEIT160746

    XU Shaoyi and ZHANG Peng. Social network information based relay selection and power allocation in D2D communication systems[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1142–1149. doi: 10.11999/JEIT160746
    [13]
    田雨, 马林华, 唐红, 等. 基于虚拟MIMO的协作通信节点选择算法[J]. 电子与信息学报, 2014, 36(4): 797–803. doi: 10.3724/SP.J.1146.2013.01008

    TIAN Yu, MA Linhua, TANG Hong, et al. Cooperative communication node selection algorithm based on virtual MIMO[J]. Journal of Electronics &Information Technology, 2014, 36(4): 797–803. doi: 10.3724/SP.J.1146.2013.01008
    [14]
    BASTAMI A H and OLFAT A. Optimal incremental relaying in cooperative diversity systems[J]. IET Communications, 2013, 7(2): 152–168. doi: 10.1049/iet-com.2012.0178
    [15]
    HOSNI I and HAMDI N. Joint optimization of switching threshold and power allocation in one way incremental amplify and forward cooperative networks[C]. 2013 International Conference on Electrical Engineering and Software Applications, Hammamet, 2013: 1–5. doi: 10.1109/ICEESA.2013.6578420.
    [16]
    BAO Xingkai and LI Jing. Efficient message relaying for wireless user cooperation: Decode-amplify-forward (DAF) and hybrid DAF and coded-cooperation[J]. IEEE Transactions on Wireless Communications, 2007, 6(11): 3975–3984. doi: 10.1109/TWC.2007.06117
    [17]
    GOMADAM K S and JAFAR S A. Optimal relay functionality for SNR maximization in memoryless relay networks[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 390–401. doi: 10.1109/JSAC.2007.070214
    [18]
    TIAN Shuang, LI Yonghui, and VUCETIC B. Piecewise-and-forward relaying in wireless relay networks[J]. IEEE Signal Processing Letters, 2011, 18(5): 323–326. doi: 10.1109/LSP.2011.2125788
    [19]
    LU Xuanxuan, LI Jing, and LIU Yang. A parametric approach to optimal soft signal relaying in wireless parallel-relay systems[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 2744–2748. doi: 10.1109/ICASSP.2014.6854099.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (1168) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return