Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Siliang HUA, Huiguo ZHANG, Shuchang WANG. Optimization and Implementation of Number Theoretical Transform Multiplier Butterfly Operation for Fully Homomorphic Encryption[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1381-1388. doi: 10.11999/JEIT200174
Citation: Siliang HUA, Huiguo ZHANG, Shuchang WANG. Optimization and Implementation of Number Theoretical Transform Multiplier Butterfly Operation for Fully Homomorphic Encryption[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1381-1388. doi: 10.11999/JEIT200174

Optimization and Implementation of Number Theoretical Transform Multiplier Butterfly Operation for Fully Homomorphic Encryption

doi: 10.11999/JEIT200174
Funds:  The Natural Science Foundation of Jiangsu Province (BK20191027)
  • Received Date: 2020-03-17
  • Rev Recd Date: 2020-10-21
  • Available Online: 2020-11-19
  • Publish Date: 2021-05-18
  • Fully Homomorphic Encryption (FHE) allows data to be encrypted and out-sourced to commercial cloud environments for processing, while encrypted which diminishes privacy concerns. For the optimization requirements of large integer multiplication operations in fully homomorphic encryption, an operand merge algorithm of a Number Theory Transform (NTT) multiplier butterfly operation unit is proposed. By using a fast algorithm of modulo operation, the operands of the Radix-16 and Radix-32 units are reduced to 43.8% and 39.1%. The hardware architecture of the NTT Radix-32 unit is designed and implemented. The proposed design is synthesized using 90 nm process technology. The results show that the maximum frequency of the circuit is 600 MHz with die area 1.714 mm2. The results also show that the optimization algorithm improves the computational efficiency of NTT multiplier butterfly operation.
  • loading
  • [1]
    ALBRECHT M, CHASE M, CHEN Hao, et al. Homomorphic encryption standard[R/OL]. http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf, 2018.
    [2]
    陈克非, 蒋林智. 同态加密专栏序言[J]. 密码学报, 2017, 4(6): 558–560. doi: 10.13868/j.cnki.jcr.000207

    CHEN Kefei and JIANG Linzhi. Preface on homomorphic encrpytion[J]. Journal of Cryptologic Research, 2017, 4(6): 558–560. doi: 10.13868/j.cnki.jcr.000207
    [3]
    李增鹏, 马春光, 周红生. 全同态加密研究[J]. 密码学报, 2017, 4(6): 561–578. doi: 10.13868/j.cnki.jcr.000208

    LI Zengpeng, MA Chunguang, and ZHOU Hongsheng. Overview on fully homomorphic encryption[J]. Journal of Cryptologic Research, 2017, 4(6): 561–578. doi: 10.13868/j.cnki.jcr.000208
    [4]
    ARCHER D, CHEN L, CHEON J H, et al. Applications of homomorphic encryption[EB/OL]. http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_paper.pdf, 2017.
    [5]
    GENTRY C. Fully homomorphic encryption using ideal lattices[C]. The 41st Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–178. doi: 10.1145/1536414.1536440.
    [6]
    ABOZAID G, EL-MAHDY A, and WADA Y. A Scalable multiplier for arbitrary large numbers supporting homomorphic encryption[C]. 2013 Euromicro Conference on Digital System Design, Los Alamitos, USA, 2013: 969–975. doi: 10.1109/DSD.2013.110.
    [7]
    RAFFERTY C, O’NEILL M, and HANLEY N. Evaluation of large integer multiplication methods on hardware[J]. IEEE Transactions on Computers, 2017, 66(8): 1369–1382. doi: 10.1109/TC.2017.2677426
    [8]
    VAN METER R and ITOH K M. Fast quantum modular exponentiation[J]. Physical Review A, 2005, 71(5): 052320. doi: 10.1103/PhysRevA.71.052320
    [9]
    GARCÍA L. Can Schönhage multiplication speed up the RSA encryption or decryption?[EB/OL]. https://www.informatik.tu-darmstadt.de/cdc/home_cdc/index.de.jsp, 2005.
    [10]
    FÜRER M. Faster integer multiplication[C]. The 39th Annual ACM Symposium on Theory of Computing, San Diego, USA, 2007: 57–66. doi: 10.1145/1250790.1250800.
    [11]
    WANG Wei, HUANG Xinming, EMMART N, et al. VLSI design of a large-number multiplier for fully homomorphic encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(9): 1879–1887. doi: 10.1109/TVLSI.2013.2281786
    [12]
    FENG Xiang and LI Shuguo. Design of an area-effcient million-bit integer multiplier using double modulus NTT[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(9): 2658–2662. doi: 10.1109/TVLSI.2017.2691727
    [13]
    施佺, 韩赛飞, 黄新明, 等. 面向全同态加密的有限域FFT算法FPGA设计[J]. 电子与信息学报, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312

    SHI Quan, HAN Saifei, HUANG Xinming, et al. Design of finite field FFT for fully homomorphic encryption based on FPGA[J]. Journal of Electronics &Information Technology, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312
    [14]
    谢星, 黄新明, 孙玲, 等. 大整数乘法器的FPGA设计与实现[J]. 电子与信息学报, 2019, 41(8): 1855–1860. doi: 10.11999/JEIT180836

    XIE Xing, HUANG Xinming, SUN Ling, et al. FPGA design and implementation of large integer multiplier[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1855–1860. doi: 10.11999/JEIT180836
    [15]
    Project Nayuki. Number-theoretic transform (integer DFT)[EB/OL]. https://www.nayuki.io/page/number-theoretic-transform-integer-dft, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (2011) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return