Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Yinan LI, Linrang ZHANG, Hailiang LU, Pengfei LI, Rongchuan LÜ, Hao LI, Yongjie FU, Erya QIU, Shiyang TANG. Research on the Aerial Target Detection by Ground-based Synthesis Aperture Microwave Radiometers[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1243-1250. doi: 10.11999/JEIT200166
Citation: Yinan LI, Linrang ZHANG, Hailiang LU, Pengfei LI, Rongchuan LÜ, Hao LI, Yongjie FU, Erya QIU, Shiyang TANG. Research on the Aerial Target Detection by Ground-based Synthesis Aperture Microwave Radiometers[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1243-1250. doi: 10.11999/JEIT200166

Research on the Aerial Target Detection by Ground-based Synthesis Aperture Microwave Radiometers

doi: 10.11999/JEIT200166
Funds:  The National Natural Science Foundation of China (41706204), The Qian Xuesen Young Innovation Foundation (QXSCXJJ2017-504), The Independent Investigate Project of Xi’an Institute of China Academy of Space Technology (Y17-KJCX-04)
  • Received Date: 2020-03-08
  • Rev Recd Date: 2020-07-20
  • Available Online: 2020-07-27
  • Publish Date: 2021-05-18
  • In view of the detection and tracking of aerial targets, the theory of the aerial targets detected by ground-based synthetic aperture microwave measurement technology and the feasibility are discussed. The detection principle of aerial targets by ground-based synthetic aperture microwave is outlined. The target detection probability is estimated, and the relationship between the systematic performance and related factors is analyzed in terms of the detection probability. Meanwhile, the feasibility of the aerial targets detected by ground-based synthetic aperture microwave measurement technology is analyzed. The experiments are performed that aerial targets are detected by a ground-based synthetic aperture microwave radiometer. Both theoretical and experimental results show that aerial targets are detected by a ground-based synthetic aperture microwave radiometer is feasibility.
  • loading
  • [1]
    彭树生, 李兴国. 毫米波辐射计反空中涂层隐身飞机的分析[J]. 红外与毫米波学报, 1998, 17(6): 454–458.

    PENG Shusheng and LI Xingguo. Analysis of anti-coating-stealth-airplane with a millimeter wave radiometer[J]. Journal of Infrared and Millimeter Waves, 1998, 17(6): 454–458.
    [2]
    LU Hailiang, LI Yinan, LI Hao, et al. Ship detection by an airborne passive Interferometric Microwave Sensor (PIMS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2682–2694. doi: 10.1109/TGRS.2019.2953355
    [3]
    卢海梁, 李一楠, 宋广南, 等. 海面目标星载微波辐射无源探测技术研究[J]. 红外与毫米波学报, 2019, 38(5): 674–681. doi: 10.11972/j.issn.1001-9014.2019.05.020

    LU Hailiang, LI Yinan, SONG Guangnan, et al. Research on the passive detection technology using space-borne synthesis aperture microwave radiometers for the sea surface target[J]. Journal of Infrared and Millimeter Waves, 2019, 38(5): 674–681. doi: 10.11972/j.issn.1001-9014.2019.05.020
    [4]
    YUJIRI L, SHOUCRI M, and MOFFA P. Passive millimeter wave imaging[J]. IEEE Microwave Magazine, 2003, 4(3): 39–50. doi: 10.1109/MMW.2003.1237476
    [5]
    SHAO Xuanmin, JUNOR WI, ZENICK R, et al. Passive interferometric millimeter-wave imaging: Achieving big results with a constellation of small satellites[J]. SPIE, 2004, 5410: 270–277. doi: 10.1117/12.542448
    [6]
    吴露露, 胡飞, 朱耀庭, 等. 毫米波热辐射阵列的空间谱估计误差模型研究[J]. 红外与毫米波学报, 2010, 29(2): 123–127. doi: 10.3724/SP.J.1010.2010.00123

    WU Lulu, HU Fei, ZHU Yaoting, et al. Error model for spatial spectrum estimation of millimeter-wave thermal radiation array[J]. Journal of Infrared and Millimeter Waves, 2010, 29(2): 123–127. doi: 10.3724/SP.J.1010.2010.00123
    [7]
    RUF C S, SWIFT C T, TANNER A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 26(5): 597–611. doi: 10.1109/36.7685
    [8]
    李浩, 卢海梁, 余锐, 等. 一种L波段相控阵微波辐射计射频干扰检测算法[J]. 电子与信息学报, 2019, 41(1): 172–179. doi: 10.11999/JEIT180203

    LI Hao, LU Hailiang, YU Rui, et al. Radio-frequency interference detection algorithm for L-band phased array microwave radiometer[J]. Journal of Electronics &Information Technology, 2019, 41(1): 172–179. doi: 10.11999/JEIT180203
    [9]
    GAIER T, KANGASLAHTI P, LAMBRIGTSEN B, et al. A 180 GHz prototype for a geostationary microwave imager/sounder-GeoSTAR-III[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 2021–2023. doi: 10.1109/IGARSS.2016.7729521.
    [10]
    CARLSTROM A, CHRISTENSEN J, INGVARSON P, et al. Geostationary Atmospheric Sounder (GAS) demonstrator development[C]. The 3rd European Conference on Antennas and Propagation, Berlin, Germany, 2009: 2036–2040.
    [11]
    ZHANG Cheng, LIU Hao, WU Ji, et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 207–218. doi: 10.1109/TGRS.2014.2320983
    [12]
    PEICHL M, SUSS H, and DILL S. High resolution passive millimeter-wave imaging technologies for reconnaissance and surveillance[J]. SPIE, 2003, 5077: 77–86. doi: 10.1117/12.484872
    [13]
    KULPA K S. Passive multi-static radiometric detection of moving targets[C]. The 15th International Conference on Microwaves, Radar and Wireless Communications, Warsaw, Poland, 2004: 92–96. doi: 10.1109/MIKON.2004.1356865.
    [14]
    HUANG Jian and GAN Tiguo. A novel millimeter wave synthetic aperture radiometer passive imaging system[C]. The 4th ICMMT International Conference on, Proceedings Microwave and Millimeter Wave Technology, Nanjing, China, 2004: 414–417. doi: 10.1109/ICMMT.2004.1411554.
    [15]
    LI Qingxia, CHEN Ke, GUO Wei, et al. An aperture synthesis radiometer at millimeter wave band[C]. 2008 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 2008: 1699–1701. doi: 10.1109/ICMMT.2008.4540797.
    [16]
    倪炜. 空中目标微波辐射特性及检测方法研究[D]. [博士论文], 华中科技大学, 2012.

    NI Wei. Microwave radiation characteristics and detection method research in aerial target detection[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2012.
    [17]
    卢海梁, 王志强, 高超, 等. 基于被动干涉微波亮温图像的海面目标探测算法研究[J]. 电子与信息学报, 2020, 42(3): 563–572. doi: 10.11999/JEIT190256

    LU Hailiang, WANG Zhiqiang, GAO Chao, et al. Research on the detection algorithm for sea surface targets based on passive interferometric microwave images[J]. Journal of Electronics &Information Technology, 2020, 42(3): 563–572. doi: 10.11999/JEIT190256
    [18]
    SALMON N A. Outdoor passive millimeter-wave imaging: Phenomenology and scene simulation[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 897–908. doi: 10.1109/TAP.2017.2781742
    [19]
    高远, 张光锋, 于畅畅, 等. 典型金属立体目标的毫米波辐射特性研究[J]. 计算机测量与控制, 2019, 27(1): 233–236. doi: 10.16526/j.cnki.11-4762/tp.2019.01.048

    GAO Yuan, ZHANG Guangfeng, YU Changchang, et al. Research on MMW radiation characteristic of typical mental targets[J]. Computer Measurement &Control, 2019, 27(1): 233–236. doi: 10.16526/j.cnki.11-4762/tp.2019.01.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (2342) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return