Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Gang ZHANG, Huajie HE, Peng ZHANG. NR-MC-CDSK Chaotic Communication System Based on Schmidt Orthogonalization[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1930-1938. doi: 10.11999/JEIT200165
Citation: Gang ZHANG, Huajie HE, Peng ZHANG. NR-MC-CDSK Chaotic Communication System Based on Schmidt Orthogonalization[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1930-1938. doi: 10.11999/JEIT200165

NR-MC-CDSK Chaotic Communication System Based on Schmidt Orthogonalization

doi: 10.11999/JEIT200165
Funds:  The National Natural Science Foundation of China (61771085), The Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601)
  • Received Date: 2020-03-10
  • Rev Recd Date: 2020-12-01
  • Available Online: 2020-12-18
  • Publish Date: 2021-07-10
  • In order to solve the shortcomings of high Bit Error Rate (BER) in traditional Correlation Delay Shift Keying (CDSK) chaotic communication system, a Noise Reduction Multi-Carrier Correlated Delay Shift Keying (NR-MC-CDSK) chaotic communication system based on Schmidt orthogonalization is proposed. At the transmitter, Schmidt orthogonalization algorithm is used to generate N completely orthogonal chaotic signals which are copied P times as reference signals. N information signals are added up for transmission in each group and multi-carrier is used to transmit MN user information per frame. At the receiver, the signal is demodulated by a matched filter, then the signal is averaged by a moving average filter to suppress the noise and demodulated by correlation. The BER formula of the system in Additive White Gaussian Noise (AWGN) channel and multipath Rayleigh fading channel are derived and simulated. The results show that the BER performance of the system is better than that of many multi-carrier chaotic communication systems and the data transmission rate is improved obviously compared with CDSK system. Theoretical basis for the future application of the system to practical communication systems is provided in the paper and shows strong feasibilities in future engineering application.
  • loading
  • [1]
    LI Ning, MARTÍNEZ-ORTEGA J F, DÍAZ V H, et al. A new high-efficiency multilevel frequency-modulation different chaos shift keying communication system[J]. IEEE Systems Journal, 2018, 12(4): 3334–3345. doi: 10.1109/jsyst.2017.2715661
    [2]
    ZHANG Bangquan, XU Weikai, WU Yunfeng, et al. Design and performance analysis of multilevel code-shifted M -ary differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(7): 1257–1261. doi: 10.1109/TCSII.2018.2880779
    [3]
    CHEND Guixian, WANG Lin, XU Weikai, et al. Carrier index differential chaos shift keying modulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(8): 907–911. doi: 10.1109/TCSII.2016.2613093
    [4]
    曹学鹏, 吕毅博, 黄婷婷, 等. 不同混沌调制方式在基于超宽带系统的体内信道下的性能表现[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(1): 72–77. doi: 10.3979/j.issn.1673-825X.2016.01.011

    CAO Xuepeng, LÜ Yibo, HUANG Tingting, et al. Performance of different DCSK schemes over the UWB in-body channel[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(1): 72–77. doi: 10.3979/j.issn.1673-825X.2016.01.011
    [5]
    张刚, 赵畅畅, 张天骐. 短参考正交多用户差分混沌键控方案的性能分析[J]. 电子与信息学报, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038

    ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of short reference orthogonal multiuser differential chaotic shift keying scheme[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038
    [6]
    贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117

    HE Lifang, CHEN Jun, and ZHANG Tianqi. Performance analysis of short reference multi-user differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117
    [7]
    MIN X, XU W, WANG L, et al. Promising performance of a frequency-modulated differential chaos shift keying ultra-wideband system under indoor environments[J]. IET Communications, 2010, 4(2): 125–134. doi: 10.1049/iet-com.2008.0658
    [8]
    KOLUMBAN G. UWB technology: Chaotic communications versus noncoherent impulse radio[C]. The 2005 European Conference on Circuit Theory and Design, 2005, Cork, Ireland, 2005: II/79-II/82. doi: 10.1109/ECCTD.2005.1522997.
    [9]
    HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
    [10]
    KADDOUM G, SOUJERI E, and NIJSURE Y. Design of a short reference noncoherent chaos-based communication systems[J]. IEEE Transactions on Communications, 2016, 64(2): 680–689. doi: 10.1109/TCOMM.2015.2514089
    [11]
    KOLUMBAN G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: A robust coding for chaos communication[C]. The 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Seville, Spain, 1996: 87–92.
    [12]
    YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
    [13]
    KADDOUM G. Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2016, 64(1): 249–260. doi: 10.1109/TCOMM.2015.2502259
    [14]
    KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020
    [15]
    QUYEN N X, DUONG T Q, and NALLANATHAN A. Modelling, analysis and performance comparison of two direct sampling DCSK receivers under frequency non-selective fading channels[J]. IET Communications, 2016, 10(11): 1263–1272. doi: 10.1049/iet-com.2015.1103
    [16]
    张刚, 徐联冰, 张天骐. 无信号内干扰的MAMU-CDSK混沌通信系统[J]. 系统工程与电子技术, 2019, 41(4): 906–913. doi: 10.3969/j.issn.1001-506X.2019.04.29

    ZHANG Gang, XU Lianbing, and ZHANG Tianqi. MAMU-CDSK chaotic communication system with no intra-signal interference[J]. Systems Engineering and Electronics, 2019, 41(4): 906–913. doi: 10.3969/j.issn.1001-506X.2019.04.29
    [17]
    KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
    [18]
    YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(11): 1733–1737. doi: 10.1109/TCSII.2017.2752754
    [19]
    QUYEN N X and PHAM C K. Quadrature multi-carrier DCSK: A high-efficiency scheme for radio communications[C]. 2017 International Conference on Advanced Technologies for Communications, Quy Nhon, Vietnam, 2017: 186–191. doi: 10.1109/ATC.2017.8167614.
    [20]
    YANG Hua, TANG W K S, CHEN Guanrong, et al. Multi-carrier chaos shift keying: System design and performance analysis[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(8): 2182–2194. doi: 10.1109/TCSI.2017.2685344
    [21]
    VENKATESH S and SINGH P. Performance analysis of OCV based non coherent MA chaotic communication system with adaptive multi user receivers[C]. 2011 International Conference on Devices and Communications (ICDeCom), Mesra, India, 2011: 1–5. doi: 10.1109/ICDECOM.2011.5738462.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1029) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return