Citation: | Hongkun CHEN, Huilan LUO. Multi-scale Semantic Information Fusion for Object Detection[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2087-2095. doi: 10.11999/JEIT200147 |
[1] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
[2] |
罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
|
[3] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[4] |
FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[EB/OL]. http://arxiv.org/abs/1701.06659, 2017.
|
[5] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[6] |
LI Zuoxin and ZHOU Fuqiang. FSSD: Feature fusion single shot multibox detector[EB/OL]. https://arxiv.org/abs/1712.00960, 2017.
|
[7] |
LIU Songtao, HUANG Di, and WANG Yunhong. Receptive field block net for accurate and fast object detection[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 404–419.
|
[8] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4
|
[9] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
|
[10] |
LI Hanchao, XIONG Pengfei, AN Jie, et al. Pyramid attention network for semantic segmentation[C]. British Machine Vision Conference, Newcastle, UK, 2018.
|
[11] |
罗会兰, 卢飞, 严源. 跨层融合与多模型投票的动作识别[J]. 电子与信息学报, 2019, 41(3): 649–655. doi: 10.11999/JEIT180373
LUO Huilan, LU Fei, and YAN Yuan. Action recognition based on multi-model voting with cross layer fusion[J]. Journal of Electronics &Information Technology, 2019, 41(3): 649–655. doi: 10.11999/JEIT180373
|
[12] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, SPAIN, 2016: 379–387.
|
[13] |
JEONG J, PARK H, and KWAK N. Enhancement of SSD by concatenating feature maps for object detection[C]. British Machine Vision Conference, London, UK, 2017.
|
[14] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[15] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
|
[16] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[17] |
KONG Tao, YAO Anbang, CHEN Yurong, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 845–853.
|
[18] |
SHRIVASTAVA A, GUPTA A, and GIRSHICK R. Training region-based object detectors with online hard example mining[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
|
[19] |
BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, 2874–2883.
|