Advanced Search
Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Yan WANG, Yuliang HE, Longhao QIU, Nan ZOU. Target Echo Enhancement under Moving Platform Reverberation Using Low-Rank and Sparse Decomposition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1978-1984. doi: 10.11999/JEIT200143
Citation: Yan WANG, Yuliang HE, Longhao QIU, Nan ZOU. Target Echo Enhancement under Moving Platform Reverberation Using Low-Rank and Sparse Decomposition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1978-1984. doi: 10.11999/JEIT200143

Target Echo Enhancement under Moving Platform Reverberation Using Low-Rank and Sparse Decomposition

doi: 10.11999/JEIT200143
Funds:  The National Key R&D Plan (2017YFC0306900), The National Defense Basic Scientific Research (JCKY2019604B001)
  • Received Date: 2020-03-03
  • Rev Recd Date: 2020-10-12
  • Available Online: 2020-12-07
  • Publish Date: 2021-07-10
  • For the underwater moving platforms, the near-range filtering of active sonar is seriously affected by reverberation disturbance. Usually, the real target echo will be masked by numerous reverberation highlights, which will greatly increase the false alarm rate of subsequent detection. Among adjacent periods of the bearing-time-record from array processing in some scenarios, this paper utilizes the potential coherent structure of reverberation, and then assumes that reverberation component satisfies the low-rank property. In addition, the relative motion may assume that target echoes of interest are irrelevant and sparse. Accordingly, the bearing-time-record can be decomposed as low-rank reverberation, sparse moving target echo and noise components. To suppress reverberation and enhance target echoes, the Accelerated Proximal Gradient(APG) and Fast Data Projection Method(FDPM) are proposed to realize offline and online decomposition, respectively. The experimental results validate the assumed models, and both approaches can effectively enhance target echoes.
  • loading
  • [1]
    GE Fengxiang, CHEN Ying, and LI Weichang. Target detecton and tracking via structured convex optimization[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 426–430. doi: 10.1109/ICASSP.2017.7952191.
    [2]
    ZOU Hui and XUE Lingzhou. A selective overview of sparse principal component analysis[J]. Proceedings of the IEEE, 2018, 106(8): 1311–1320. doi: 10.1109/JPROC.2018.2846588
    [3]
    LI Haiyan, YIN Fan, and LI Chao. A high-accuracy target tracking method and its application in acoustic engineering[C]. Proceedings of the IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2019: 690–694. doi: 10.1109/SIPROCESS.2019.8868499.
    [4]
    BOUWMANS T, JAVED S, ZHANG Hongyang, et al. On the applications of robust PCA in image and video processing[J]. Proceedings of the IEEE, 2018, 106(8): 1427–1457. doi: 10.1109/JPROC.2018.2853589
    [5]
    VAN LUONG H, DELIGIANNIS N, SEILER J, et al. Compressive online robust principal component analysis via n-1 minimization[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4314–4329. doi: 10.1109/TIP.2018.2831915
    [6]
    杨依忠, 汪鹏飞, 胡雄楼, 等. 基于鲁棒主成分分析的运动目标检测优化算法[J]. 电子与信息学报, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789

    YANG Yizhong, WANG Pengfei, HU Xionglou, et al. Moving object detection optimization algorithm based on robust principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789
    [7]
    ZHENG Zhi, HUANG Yixiao, WANG Wenqin, et al. Spatial smoothing PAST algorithm for DOA tracking using difference coarray[J]. IEEE Signal Processing Letters, 2019, 26(11): 1623–1627. doi: 10.1109/LSP.2019.2942146
    [8]
    WU Qiang, ZHENG Jiansheng, DONG Zhicheng, et al. An improved adaptive subspace tracking algorithm based on approximated power iteration[J]. IEEE Access, 2018, 6: 43136–43145. doi: 10.1109/ACCESS.2018.2863557
    [9]
    DOUKOPOULOS X G and MOUSTAKIDES G V. Fast and stable subspace tracking[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1452–1465. doi: 10.1109/tsp.2007.909335
    [10]
    HSU D, KAKADE S M, and ZHANG Tong. Robust matrix decomposition with sparse corruptions[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7221–7234. doi: 10.1109/TIT.2011.2158250
    [11]
    HE Jun, BALZANO L, and LUI J C S. Online robust subspace tracking from partial information[EB/OL]. https://arxiv.org/pdf/1109.3827v2.pdf, 2011.
    [12]
    TOH K C and YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3): 615–640.
    [13]
    LIN Zhouchen, CHEN Minming, and MA Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. https://arxiv.org/pdf/1009.5055v3.pdf, 2010.
    [14]
    BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542
    [15]
    LIN Zhouchen, ARVIND G, JOHN W, et al. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix[R]. Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246, 2009. doi: 10.1017/S0025315400020749.
    [16]
    LI Weichang, SUBRAHMANYA N, and XU Feng. Online subspace and sparse filtering for target tracking in reverberant environment[C]. Proceedings of the IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, USA, 2012: 329–332. doi: 10.1109/SAM.2012.6250502.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (908) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return