Advanced Search
Volume 43 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Tianshuang QIU, Hao LIU, Jiacheng ZHANG, Jingchun LI, Rong LI. An Improved Time Delay Estimation Method Based on Generalized Cyclic Correntropy[J]. Journal of Electronics & Information Technology, 2021, 43(2): 255-262. doi: 10.11999/JEIT200142
Citation: Tianshuang QIU, Hao LIU, Jiacheng ZHANG, Jingchun LI, Rong LI. An Improved Time Delay Estimation Method Based on Generalized Cyclic Correntropy[J]. Journal of Electronics & Information Technology, 2021, 43(2): 255-262. doi: 10.11999/JEIT200142

An Improved Time Delay Estimation Method Based on Generalized Cyclic Correntropy

doi: 10.11999/JEIT200142
Funds:  The National Natural Science Foundation of China (61671105, 61172108)
  • Received Date: 2020-03-03
  • Rev Recd Date: 2020-08-25
  • Available Online: 2020-11-19
  • Publish Date: 2021-02-23
  • In complex electromagnetic environment, due to the impact of co-channel interference and impulsive noise, the performance of existing time delay estimation algorithms degrade severely. In this paper, an improved Generalized Cyclic Correntropy time delay Estimation (HTGCCE) algorithm is proposed by using the Hyperbolic Tangent function to address this degradation problem. Firstly, the performance degradation of generalized cyclic correntropy method is thoroughly analyzed and explained in impulsive noise. Then, based on the hyperbolic tangent function, an improved generalized cyclic correntropy method is proposed to improve the delay estimation performance under impulsive noise. Finally, the simulation results show that the proposed time delay estimation algorithm has an outstanding performance in impulsive noise, even with small characteristic component and low generalized signal-to-noise ratio.
  • loading
  • GARDNER W A, NAPOLITANO A, and PAURA L. Cyclostationarity: Half a century of research[J]. Signal Processing, 2006, 86(4): 639–697. doi: 10.1016/j.sigpro.2005.06.016
    GARDNER W A and CHEN C K. Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environments. I. Theory and method[J]. IEEE Transactions on Signal Processing, 1992, 40(5): 1168–1184. doi: 10.1109/78.134479
    CHEN C K and GARDNER W A. Signal-selective time-difference of arrival estimation for passive location of man-made signal sources in highly corruptive environments. II. Algorithms and performance[J]. IEEE Transactions on Signal Processing, 1992, 40(5): 1185–1197. doi: 10.1109/78.134480
    马济通, 邱天爽, 李蓉, 等. 脉冲噪声下基于Renyi熵的分数低阶双模盲均衡算法[J]. 电子与信息学报, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366

    MA Jitong, QIU Tianshuang, LI Rong, et al. Dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics under impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366
    邱天爽, 郭莹. 信号处理与数据分析[M]. 北京: 清华大学出版社, 2015: 368–374.

    QIU Tianshuang and GUO Ying. Signal Processing and Data Analysis[M]. Beijing: Tsinghua University Press, 2015: 368–374.
    MA Xinyu and NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 1996, 44(11): 2669–2687. doi: 10.1109/78.542175
    GEORGIOU P G, TSAKALIDES P, and KYRIAKAKIS C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise[J]. IEEE Transactions on Multimedia, 1999, 1(3): 291–301. doi: 10.1109/6046.784467
    ZENG Wenjun, SO H C, and ZOUBIR A M. An ℓp-norm minimization approach to time delay estimation in impulsive noise[J]. Digital Signal Processing, 2013, 23(4): 1247–1254. doi: 10.1016/j.dsp.2013.03.013
    YU Ling, QIU Tianshuang, and SONG Aimin. A time delay estimation algorithm based on the weighted correntropy spectral density[J]. Circuits, Systems, and Signal Processing, 2017, 36(3): 1115–1128. doi: 10.1007/s00034-016-0347-y
    LUAN Shengyang, QIU Tianshuang, ZHU Yongjie, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503–508. doi: 10.1016/j.sigpro.2015.09.023
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    FONTES A I R, REGO J B A, DE M. MARTINS A, et al. Cyclostationary correntropy: Definition and applications[J]. Expert Systems with Applications, 2017, 69: 110–117. doi: 10.1016/j.eswa.2016.10.029
    LIU Tao, QIU Tianshuang, and LUAN Shengyang. Cyclic correntropy: Foundations and theories[J]. IEEE Access, 2018, 6: 34659–34669. doi: 10.1109/ACCESS.2018.2847346
    MA Jitong and QIU Tianshuang. Automatic modulation classification using cyclic correntropy spectrum in impulsive noise[J]. IEEE Wireless Communications Letters, 2019, 8(2): 440–443. doi: 10.1109/lwc.2018.2875001
    ZHANG Jinfeng, QIU Tianshuang, SONG Aimin, et al. A novel correntropy based DOA estimation algorithm in impulsive noise environments[J]. Signal Processing, 2014, 104: 346–357. doi: 10.1016/j.sigpro.2014.04.033
    LI Sen, LIN Bin, DING Yabo, et al. Signal-selective time difference of arrival estimation based on generalized cyclic correntropy in impulsive noise environments[C]. The 13th International Conference on Wireless Algorithms, Systems, and Applications, Tianjin, China, 2018: 274–283. doi: 10.1007/978-3-319-94268-1_23.
    CHEN Xing, QIU Tianshuang, LIU Cheng, et al. TDOA estimation algorithm based on generalized cyclic correntropy in impulsive noise and cochannel interference[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, E101(10): 1625–1630. doi: 10.1587/transfun.E101.A.1625
    CHEN Badong, XING Lei, ZHAO Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387. doi: 10.1109/TSP.2016.2539127
    栾声扬. 有界非线性协方差与相关熵及在无线定位中的应用[D]. [博士论文], 大连理工大学, 2017.

    LUAN Shengyang. Bounded nonlinear covariance and correntropy for the application of wireless location[D]. [Ph. D. dissertation], Dalian University of Technology, 2017.
    罗忠涛, 詹燕梅, 郭人铭, 等. 脉冲噪声中基于指数函数的可变拖尾非线性变换设计[J]. 电子与信息学报, 2020, 42(4): 932–940. doi: 10.11999/JEIT190401

    LUO Zhongtao, ZHAN Yanmei, GUO Renming, et al. Variable tailing nonlinear transformation design based on exponential function in impulsive noise[J]. Journal of Electronics &Information Technology, 2020, 42(4): 932–940. doi: 10.11999/JEIT190401
    SHARIFI K and LEON-GARCIA A. Estimation of shape parameter for generalized gaussian distributions in subband decompositions of video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(1): 52–56. doi: 10.1109/76.350779
    ZHANG Jiacheng, QIU Tianshuang, LUAN Shengyang, et al. Bounded non-linear covariance based ESPRIT method for noncircular signals in presence of impulsive noise[J]. Digital Signal Processing, 2019, 87: 104–111. doi: 10.1016/j.dsp.2019.01.018
    LUAN Shengyang, QIU Tianshuang, YU Ling, et al. BNC-based projection approximation subspace tracking under impulsive noise[J]. IET Radar, Sonar & Navigation, 2017, 11(7): 1055–1061. doi: 10.1049/iet-rsn.2016.0267
    LIU Tao, QIU Tianshuang, and LUAN Shengyang. Hyperbolic-tangent-function-based cyclic correlation: Definition and theory[J]. Signal Processing, 2019, 164: 206–216. doi: 10.1016/j.sigpro.2019.06.001
    LIU Yang, QIU Tianshuang, and SHENG Hu. Time-difference-of-arrival estimation algorithms for cyclostationary signals in impulsive noise[J]. Signal Processing, 2012, 92(9): 2238–2247. doi: 10.1016/j.sigpro.2012.02.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (979) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return