Citation: | Tun LI, Yaokun ZHU, Xinhong WU, Yunpeng XIAO, Haifeng WU. Vehicle Trajectory Prediction Method Based on Intersection Context and Deep Belief Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1323-1330. doi: 10.11999/JEIT200137 |
[1] |
芮兰兰, 李钦铭. 基于组合模型的短时交通流量预测算法[J]. 电子与信息学报, 2016, 38(5): 1227–1233. doi: 10.11999/JEIT150846
RUI Lanlan and LI Qinming. Short-term traffic flow prediction algorithm based on combined model[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1227–1233. doi: 10.11999/JEIT150846
|
[2] |
YUAN Guan, SUN Penghui, ZHAO Jie, et al. A review of moving object trajectory clustering algorithms[J]. Artificial Intelligence Review, 2017, 47(1): 123–144. doi: 10.1007/s10462-016-9477-7
|
[3] |
ENDO Y, TODA H, NISHIDA K, et al. Deep feature extraction from trajectories for transportation mode estimation[C]. The 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Auckland, New Zealand, 2016: 54–66. doi: 10.1007/978-3-319-31750-2_5.
|
[4] |
PORIKLI F. Clustering variable length sequences by eigenvector decomposition using HMM[C]. The Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Lisbon, Portugal, 2004: 352–360. doi: 10.1007/978-3-540-27868-9_37.
|
[5] |
WU Bin and QIN Lei. Design and implementation of business-driven bi platform based on cloud computing[C]. 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, Beijing, China, 2011: 118–122. doi: 10.1109/CCIS.2011.6045044.
|
[6] |
WANG Yuqi, CAO Jiannong, LI Wengen, et al. Exploring traffic congestion correlation from multiple data sources[J]. Pervasive and Mobile Computing, 2017, 41: 470–483. doi: 10.1016/j.pmcj.2017.03.015
|
[7] |
ANAGNOSTOPOULOS C and HADJIEFTHYMIADES S. Intelligent trajectory classification for improved movement prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(10): 1301–1314. doi: 10.1109/TSMC.2014.2316742
|
[8] |
ZHANG Fusang, JIN Beihong, WANG Zhaoyang, et al. On geocasting over urban bus-based networks by mining trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1734–1747. doi: 10.1109/TITS.2015.2504513
|
[9] |
陈忠辉, 凌献尧, 冯心欣, 等. 基于模糊C均值聚类和随机森林的短时交通状态预测方法[J]. 电子与信息学报, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
CHEN Zhonghui, LING Xianyao, FENG Xinxin, et al. Short-term traffic state prediction approach based on FCM and random forest[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
|
[10] |
PIRES T J P and FIGUEIREDO M A T. Shape-based trajectory clustering[C]. The 6th International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 2017: 71–81. doi: 10.5220/0006117400710081.
|
[11] |
ZHAO Pengxiang, QIN Kun, YE Xinyue, et al. A trajectory clustering approach based on decision graph and data field for detecting hotspots[J]. International Journal of Geographical Information Science, 2017, 31(6): 1101–1127. doi: 10.1080/13658816.2016.1213845
|
[12] |
MIRGE V, VERMA K, and GUPTA S. Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering[J]. Advances in Data Analysis and Classification, 2017, 11(3): 547–561. doi: 10.1007/s11634-016-0256-8
|
[13] |
BROWN P F, DESOUZA P V, MERCER R L, et al. Class-based n-gram models of natural language[J]. Computational Linguistics, 1992, 18(4): 467–479.
|
[14] |
MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, United States, 2013: 3111–3119.
|
[15] |
HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554. doi: 10.1162/neco.2006.18.7.1527
|
[16] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[17] |
LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. The Journal of Machine Learning Research, 2009, 10(1): 1–40.
|
[18] |
MENZ L, HERBERTH R, LUO Chunbo, et al. An improved method for mobility prediction using a Markov model and density estimation[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377086.
|
[19] |
XUE Hao, HUYNH D Q, and REYNOLDS M. SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction[C]. 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, USA, 2018: 1186–1194. doi: 10.1109/WACV.2018.00135.
|
[20] |
GIACOMETTI A and SOULET A. Frequent pattern outlier detection without exhaustive mining[C]. The 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Auckland, New Zealand, 2016: 196–207. doi: 10.1007/978-3-319-31750-2_16.
|