Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Tun LI, Yaokun ZHU, Xinhong WU, Yunpeng XIAO, Haifeng WU. Vehicle Trajectory Prediction Method Based on Intersection Context and Deep Belief Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1323-1330. doi: 10.11999/JEIT200137
Citation: Tun LI, Yaokun ZHU, Xinhong WU, Yunpeng XIAO, Haifeng WU. Vehicle Trajectory Prediction Method Based on Intersection Context and Deep Belief Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1323-1330. doi: 10.11999/JEIT200137

Vehicle Trajectory Prediction Method Based on Intersection Context and Deep Belief Network

doi: 10.11999/JEIT200137
Funds:  The National Natural Science Foundation of China (61772098), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201800641), The Doctoral Top Talents Program of Chongqing University of Posts and Telecommunications (BYJS2017004), Chongqing Technology Innovation and Application Development Special General Project (cstc2020jscx-msxmX0150)
  • Received Date: 2020-02-28
  • Rev Recd Date: 2020-10-15
  • Available Online: 2020-10-21
  • Publish Date: 2021-05-18
  • For the temporal features of trajectory intersection sequence and spatial correlation of the actual road network, a trajectory prediction method based on the Deep Belief Networks and SoftMax (DBN-SoftMax) is proposed. At first, considering the sparsity of trajectory in an intersection set and the insufficiency of generalization ability in general feature learning methods for new features, the strong unsupervised feature learning ability of Deep Belief Network (DBN) is used to extract the local spatial features of trajectory. Secondly, considering the temporal features of the trajectory, the logistic regression method and the linear combination of the current trajectory set in the road network features space are used to predict the trajectory. Finally, Based on the idea of word embedding in the field of natural language processing and the contextual relationship of intersections in the actual trajectory, the vector set of intersections is used to represent the spatiotemporal relationship of traffic between intersections. The experimental results show that the model can not only extract the trajectory features effectively, but also obtain better prediction performance in a road network with complex topology.
  • loading
  • [1]
    芮兰兰, 李钦铭. 基于组合模型的短时交通流量预测算法[J]. 电子与信息学报, 2016, 38(5): 1227–1233. doi: 10.11999/JEIT150846

    RUI Lanlan and LI Qinming. Short-term traffic flow prediction algorithm based on combined model[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1227–1233. doi: 10.11999/JEIT150846
    [2]
    YUAN Guan, SUN Penghui, ZHAO Jie, et al. A review of moving object trajectory clustering algorithms[J]. Artificial Intelligence Review, 2017, 47(1): 123–144. doi: 10.1007/s10462-016-9477-7
    [3]
    ENDO Y, TODA H, NISHIDA K, et al. Deep feature extraction from trajectories for transportation mode estimation[C]. The 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Auckland, New Zealand, 2016: 54–66. doi: 10.1007/978-3-319-31750-2_5.
    [4]
    PORIKLI F. Clustering variable length sequences by eigenvector decomposition using HMM[C]. The Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Lisbon, Portugal, 2004: 352–360. doi: 10.1007/978-3-540-27868-9_37.
    [5]
    WU Bin and QIN Lei. Design and implementation of business-driven bi platform based on cloud computing[C]. 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, Beijing, China, 2011: 118–122. doi: 10.1109/CCIS.2011.6045044.
    [6]
    WANG Yuqi, CAO Jiannong, LI Wengen, et al. Exploring traffic congestion correlation from multiple data sources[J]. Pervasive and Mobile Computing, 2017, 41: 470–483. doi: 10.1016/j.pmcj.2017.03.015
    [7]
    ANAGNOSTOPOULOS C and HADJIEFTHYMIADES S. Intelligent trajectory classification for improved movement prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(10): 1301–1314. doi: 10.1109/TSMC.2014.2316742
    [8]
    ZHANG Fusang, JIN Beihong, WANG Zhaoyang, et al. On geocasting over urban bus-based networks by mining trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1734–1747. doi: 10.1109/TITS.2015.2504513
    [9]
    陈忠辉, 凌献尧, 冯心欣, 等. 基于模糊C均值聚类和随机森林的短时交通状态预测方法[J]. 电子与信息学报, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090

    CHEN Zhonghui, LING Xianyao, FENG Xinxin, et al. Short-term traffic state prediction approach based on FCM and random forest[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
    [10]
    PIRES T J P and FIGUEIREDO M A T. Shape-based trajectory clustering[C]. The 6th International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 2017: 71–81. doi: 10.5220/0006117400710081.
    [11]
    ZHAO Pengxiang, QIN Kun, YE Xinyue, et al. A trajectory clustering approach based on decision graph and data field for detecting hotspots[J]. International Journal of Geographical Information Science, 2017, 31(6): 1101–1127. doi: 10.1080/13658816.2016.1213845
    [12]
    MIRGE V, VERMA K, and GUPTA S. Dense traffic flow patterns mining in bi-directional road networks using density based trajectory clustering[J]. Advances in Data Analysis and Classification, 2017, 11(3): 547–561. doi: 10.1007/s11634-016-0256-8
    [13]
    BROWN P F, DESOUZA P V, MERCER R L, et al. Class-based n-gram models of natural language[J]. Computational Linguistics, 1992, 18(4): 467–479.
    [14]
    MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, United States, 2013: 3111–3119.
    [15]
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554. doi: 10.1162/neco.2006.18.7.1527
    [16]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [17]
    LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. The Journal of Machine Learning Research, 2009, 10(1): 1–40.
    [18]
    MENZ L, HERBERTH R, LUO Chunbo, et al. An improved method for mobility prediction using a Markov model and density estimation[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377086.
    [19]
    XUE Hao, HUYNH D Q, and REYNOLDS M. SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction[C]. 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, USA, 2018: 1186–1194. doi: 10.1109/WACV.2018.00135.
    [20]
    GIACOMETTI A and SOULET A. Frequent pattern outlier detection without exhaustive mining[C]. The 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Auckland, New Zealand, 2016: 196–207. doi: 10.1007/978-3-319-31750-2_16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1351) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return