| Citation: | Tao ZHANG, Juncheng GUO, Ran LAI. Gridless Sparse Recovery for Non-sidelooking Space-Time Adaptive Processing Based on Atomic Norm Minimization[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1235-1242. doi: 10.11999/JEIT200114 | 
 
	                | [1] | KLEMM R. Applications of Space-time Adaptive Processing[M]. London: Institution of Electrical Engineers, 2004. | 
| [2] | REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi:  10.1109/TAES.1974.307893 | 
| [3] | DUAN Keqing, YUAN Huadong, XU Hong, et al. Sparsity-based non-stationary clutter suppression technique for airborne radar[J]. IEEE Access, 2018, 6: 56162–56169. doi:  10.1109/ACCESS.2018.2873021 | 
| [4] | CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi:  10.1109/MSP.2007.914731 | 
| [5] | ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi:  10.1016/j.sigpro.2009.11.009 | 
| [6] | 阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6): 1194–1204. doi:  10.3969/j.issn.0372-2112.2014.06.024 YANG Zhaocheng, LI Xiang, and WANG Hongqiang. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194–1204. doi:  10.3969/j.issn.0372-2112.2014.06.024 | 
| [7] | 马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217–228. doi:  10.3724/SP.J.1300.2014.14002 MA Zeqiang, WANG Xiqin, LIU Yimin, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217–228. doi:  10.3724/SP.J.1300.2014.14002 | 
| [8] | SUN Ke, MENG Huadong, WANG Yongliang, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222–2236. doi:  10.1016/j.sigpro.2011.04.006 | 
| [9] | 孙珂, 张颢, 李刚, 等. 基于杂波谱稀疏恢复的空时自适应处理[J]. 电子学报, 2011, 39(6): 1389–1393. SUN Ke, ZHANG Hao, LI Gang, et al. STAP via sparse recovery of clutter spectrum[J]. Acta Electronica Sinica, 2011, 39(6): 1389–1393. | 
| [10] | YANG Zhaocheng, QIN Yuliang, DE LAMARE R C, et al. Sparsity-based direct data domain space-time adaptive processing with intrinsic clutter motion[J]. Circuits, Systems, and Signal Processing, 2017, 36(1): 219–246. doi:  10.1007/s00034-016-0301-z | 
| [11] | WANG Lei, LIU Yimin, MA Zeqiang, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 561–565. doi:  10.1109/RADAR.2015.7131061. | 
| [12] | DUAN Keqing, WANG Zetao, XIE Wenchong, et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11(5): 544–553. doi:  10.1049/iet-spr.2016.0183 | 
| [13] | SUN Yuze, YANG Xiaopeng, LONG Teng, et al. Robust sparse Bayesian learning STAP method for discrete interference suppression in nonhomogeneous clutter[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1003–1008. doi:  10.1109/RADAR.2017.7944350. | 
| [14] | 吕晓德, 杨璟茂, 岳琦, 等. 基于稀疏贝叶斯学习的机载双基雷达杂波抑制[J]. 电子与信息学报, 2018, 40(11): 2651–2658. doi:  10.11999/JEIT180062 LV Xiaode, YANG Jingmao, YUE Qi, et al. Airborne bistatic radar clutter suppression based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2651–2658. doi:  10.11999/JEIT180062 | 
| [15] | YANG Zhaocheng, LI Xiang, WANG Hongqiang, et al. Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity[J]. IET Signal Processing, 2016, 10(2): 150–161. doi:  10.1049/iet-spr.2014.0255 | 
| [16] | DUAN Keqing, LIU Weijian, DUAN Guangqing, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 557–564. doi:  10.1049/iet-rsn.2017.0425 | 
| [17] | BAI Gatai, TAO Ran, ZHAO Juan, et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138: 11–15. doi:  10.1016/j.sigpro.2017.03.003 | 
| [18] | CANDÈS E J and FERNANDEZ‐GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956. doi:  10.1002/cpa.21455 | 
| [19] | TANG Gongguo, BHASKAR B, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi:  10.1109/TIT.2013.2277451 | 
| [20] | CHI Yuejie and CHEN Yuxin. Compressive two-dimensional harmonic retrieval via atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2015, 63(4): 1030–1042. doi:  10.1109/TSP.2014.2386283 | 
| [21] | YANG Zai, XIE Lihua, and STOICA P. Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685–3701. doi:  10.1109/TIT.2016.2553041 | 
| [22] | SEN S. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1510–1523. doi:  10.1109/JSTSP.2015.2464187 | 
| [23] | GINI F and GRECO M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[J]. Signal Processing, 2002, 82(12): 1847–1859. doi:  10.1016/S0165-1684(02)00315-8 | 
