Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Yongmei REN, Jie YANG, Zhiqiang GUO, Hui CAO. Self-adaptive Entropy Weighted Decision Fusion Method for Ship Image Classification Based on Multi-scale Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1424-1431. doi: 10.11999/JEIT200102
Citation: Yongmei REN, Jie YANG, Zhiqiang GUO, Hui CAO. Self-adaptive Entropy Weighted Decision Fusion Method for Ship Image Classification Based on Multi-scale Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1424-1431. doi: 10.11999/JEIT200102

Self-adaptive Entropy Weighted Decision Fusion Method for Ship Image Classification Based on Multi-scale Convolutional Neural Network

doi: 10.11999/JEIT200102
Funds:  The National Natural Science Foundation of China (51879211), The National Key Research and Development Program of China (2020YFB1710800), The Scientific Research Project of the Hunan Provincial Education Department (18C0900)
  • Received Date: 2020-02-11
  • Rev Recd Date: 2020-10-28
  • Available Online: 2020-11-16
  • Publish Date: 2021-05-18
  • Considering the limitation of single scale Convolutional Neural Network (CNN) for ship image classification, a self-adaptive entropy weighted decision fusion method for ship image classification based on multi-scale CNN is proposed. Firstly, the multi-scale CNN is used to extract the multi-scale features of ship image with different sizes, and the optimum models of different sub-networks are trained. Then, the ship images of test set are tested on the optimum models, and the probability value that is output by Softmax function of multi-scale CNN is obtained, which is used to calculate the information entropy so as to realize the adaptive weight assigned to different input ship images. Finally, self-adaptive entropy weighted decision fusion is carried out for the probability value that is output by Softmax function of different sub-networks to realize the final ship image classification. Experiments perform on VAIS (Visible And Infrared Spectrums) and self-built datasets respectively, and the proposed method achieves average accuracy of 95.07% and 97.50% on these datasets respectively. The experimental results show that the proposed method has better classification performance than those of the single scale CNN classification method and other state-of-the-art methods.
  • loading
  • [1]
    ZHANG Erhu, WANG Kelu, and LIN Guangfeng. Classification of marine vessels with multi-feature structure fusion[J]. Applied Sciences, 2019, 9(10): 2153. doi: 10.3390/app9102153
    [2]
    DONG Chao, LIU Jinghong, and XU Fang. Ship detection in optical remote sensing images based on saliency and a rotation-invariant descriptor[J]. Remote Sensing, 2018, 10(3): 400. doi: 10.3390/rs10030400
    [3]
    吴映铮, 杨柳涛. 基于HOG和SVM的船舶图像分类算法[J]. 上海船舶运输科学研究所学报, 2019, 42(1): 58–64.

    WU Yingzheng and YANG Liutao. Ship image classification by combined use of HOG and SVM[J]. Journal of Shanghai Ship and Shipping Research Institute, 2019, 42(1): 58–64.
    [4]
    PARAMESWARAN S and RAINEY K. Vessel classification in overhead satellite imagery using weighted “bag of visual words”[C]. SPIE 9476, Automatic Target Recognition XXV, Baltimore, USA, 2015: 947609. doi: 10.1117/12.2177779.
    [5]
    ARGUEDAS V F. Texture-based vessel classifier for electro-optical satellite imagery[C]. 2015 IEEE International Conference on Image Processing, Quebec City, Canada, 2015: 3866–3870. doi: 10.1109/ICIP.2015.7351529.
    [6]
    王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    [7]
    李健伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics &Information Technology, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050
    [8]
    CHEN Yunfan, XIE Han, and SHIN H. Multi-layer fusion techniques using a CNN for multispectral pedestrian detection[J]. IET Computer Vision, 2018, 12(8): 1179–1187. doi: 10.1049/iet-cvi.2018.5315
    [9]
    闫河, 王鹏, 董莺艳, 等. 一种CNN与ELM相结合的船舶分类识别方法[J]. 重庆理工大学学报: 自然科学, 2019, 33(1): 53–57. doi: 10.3969/j.issn.1674-8425(z).2019.01.008

    YAN He, WANG Peng, DONG Yingyan, et al. A classification identification method of ships combining CNN and ELM[J]. Journal of Chongqing Institute of Technology:Natural Science, 2019, 33(1): 53–57. doi: 10.3969/j.issn.1674-8425(z).2019.01.008
    [10]
    陈兴伟. 深度学习船舶分类技术研究[J]. 舰船科学技术, 2019, 41(7A): 142–144. doi: 10.3404/j.issn.1672-7649.2019.7A.048

    CHEN Xingwei. Research on ship classification technology based on deep learning[J]. Ship Science and Technology, 2019, 41(7A): 142–144. doi: 10.3404/j.issn.1672-7649.2019.7A.048
    [11]
    SHI Qiaoqiao, LI Wei, TAO Ran, et al. Ship classification based on multifeature ensemble with convolutional neural network[J]. Remote Sensing, 2019, 11(4): 419. doi: 10.3390/rs11040419
    [12]
    BENTES C, VELOTTO D, and TINGS B. Ship classification in TerraSAR-X images with convolutional neural networks[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 258–266. doi: 10.1109/JOE.2017.2767106
    [13]
    杨亚东, 王晓峰, 潘静静. 改进CNN及其在船舶识别中的应用[J]. 计算机工程与设计, 2018, 39(10): 3228–3233. doi: 10.16208/j.issn1000-7024.2018.10.039

    YANG Yadong, WANG Xiaofeng, and PAN Jingjing. Improved CNN and its application in ship identification[J]. Computer Engineering and Design, 2018, 39(10): 3228–3233. doi: 10.16208/j.issn1000-7024.2018.10.039
    [14]
    LI Xiaobin, JIANG Bitao, SUN Tong, et al. Remote sensing scene classification based on decision-level fusion[C]. 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference, Chongqing, China, 2018: 393–397. doi: 10.1109/ITOEC.2018.8740526.
    [15]
    GENG Jie, JIANG Wen, and DENG Xinyang. Multi-scale deep feature learning network with bilateral filtering for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 201–213. doi: 10.1016/j.isprsjprs.2020.07.007
    [16]
    李凯, 韩冰, 张景滔. 基于条件随机场与多尺度卷积神经网络的交通标志检测与识别[J]. 计算机应用, 2018, 38(S2): 270–275.

    LI Kai, HAN Bing, and ZHANG Jingtao. Traffic sign detection and recognition based on conditional random field and multi-scale convolutional neural network[J]. Journal of Computer Applications, 2018, 38(S2): 270–275.
    [17]
    REN Yongmei, YANG Jie, ZHANG Qingnian, et al. Multi-feature fusion with convolutional neural network for ship classification in optical images[J]. Applied Sciences, 2019, 9(20): 4209. doi: 10.3390/app9204209
    [18]
    CHEN Wangcai, LIU Wenbo and LI Kaiyu. Rail crack recognition based on adaptive weighting multi-classifier fusion decision[J]. Measurement, 2018, 123: 102–114. doi: 10.1016/j.measurement.2018.03.059
    [19]
    ZHANG M M, CHOI J, DANIILIDIS K, et al. VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, USA, 2015: 10–16. doi: 10.1109/CVPRW.2015.7301291.
    [20]
    DING Jun, CHEN Bo, LIU Hongwei, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368. doi: 10.1109/LGRS.2015.2513754
    [21]
    RAINEY K, REEDER J D, and CORELLI A G. Convolution neural networks for ship type recognition[C]. SPIE 9844, Automatic Target Recognition XXVI, Baltimore, USA, 2016: 984409. doi: 10.1117/12.2229366.
    [22]
    LI Zhenzhen, ZHAO Baojun, TANG Linbo, et al. Ship classification based on convolutional neural networks[J]. The Journal of Engineering, 2019, 2019(21): 7343–7346. doi: 10.1049/joe.2019.0422
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article views (1877) PDF downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return