Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Lei ZHU, Jingman LI, Yang PAN, Yuchun LIU, Xiao HU. SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099
Citation: Lei ZHU, Jingman LI, Yang PAN, Yuchun LIU, Xiao HU. SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099

SAR Image Despeckling Algorithm Using Non-Local Means with Adaptive Filtering Strength

doi: 10.11999/JEIT200099
Funds:  The National Natural Science Foundation of China (61971339), The Shaanxi Provincial Key Research and Development Program (2019GY-113), The Xi’an Science and Technology Bureau Innovation and Guidance Program (201805030YD8CG14(6))
  • Received Date: 2020-02-11
  • Rev Recd Date: 2020-09-09
  • Available Online: 2020-09-15
  • Publish Date: 2021-05-18
  • A new Non-Local Means (NLM) despeckling algorithm (AFS-NLM) with Adaptive Filtering Strength (AFS) is proposed to improve the performance of reducing multiplicative speckle and preserving the edges in SAR images. A modified Kuan filtering coefficient which can better characterize the homogeneous and edge regions of SAR image is formed by using the local mean and variance calculated in the Frost filtered image to improve the estimation of SAR image scene parameters. An improved NLM which adapts to the multiplicative noise characteristics is constructed by the new similarity measurement parameter estimated by the local mean ratio and the new adaptive decay factor estimated by the improved Kuan filtering coefficient. A new weighted filtering model which can automatically adjust the filtering strength is formed. In the new model, the improved NLM filters controlled by the skew smoothing parameters and the skew edge protection parameters are used to replace the local average value of pixels and the gray value of pixels in the classic Kuan filter model as weighting items, and the adaptive adjustment factor constructed by the improved Kuan filter coefficient is used to weight the two items. Experimental results and comparisons with several advanced despeckling algorithms in recent years show that the proposed algorithm has better speckle suppression and edge preservation performance.
  • loading
  • [1]
    魏松杰, 蒋鹏飞, 袁秋壮, 等. 深度神经网络下的SAR舰船目标检测与区分模型[J]. 西北工业大学学报, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587

    WEI Songjie, JIANG Pengfei, YUAN Qiuzhuang, et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 587–593. doi: 10.1051/jnwpu/20193730587
    [2]
    LIU Su, ZHANG Gong, and LIU Wenbo. Group sparse representation based dictionary learning for SAR image despeckling[J]. IEEE Access, 2019, 7: 30809–30817. doi: 10.1109/ACCESS.2019.2859825
    [3]
    李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展[J]. 电子与信息学报, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468

    LI Yu, CHEN Jie, and ZHANG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
    [4]
    吴元. 一种基于参数更新的机载SAR图像目标定位方法[J]. 电子与信息学报, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564

    WU Yuan. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1063–1068. doi: 10.11999/JEIT180564
    [5]
    彭书娟, 曲长文, 李建伟, 等. 基于ROEWA算子局部活动轮廓的SAR图像分割算法[J]. 系统工程与电子技术, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09

    PENG Shujuan, QU Changwen, LI Jianwei, et al. Local motion contour segmentation algorithm of SAR image based on ROEWA operator[J]. Systems Engineering and Electronics, 2019, 41(2): 280–290. doi: 10.3969/j.issn.1001-506X.2019.02.09
    [6]
    韩子硕, 王春平. 基于改进FCM与MRF的SAR图像分割[J]. 系统工程与电子技术, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08

    HAN Zishuo and WANG Chunping. SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electronics, 2019, 41(8): 1726–1734. doi: 10.3969/j.issn.1001-506X.2019.08.08
    [7]
    YU Meiting, QUAN Sinong, KUANG Gangyao, et al. SAR target recognition via joint sparse and dense representation of monogenic signal[J]. Remote Sensing, 2019, 11(22): 2676. doi: 10.3390/rs11222676
    [8]
    LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165–168. doi: 10.1109/TPAMI.1980.4766994
    [9]
    KUAN D T, SAWCHUK A A, STRAND T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. doi: 10.1109/TPAMI.1985.4767641
    [10]
    MA Xiaoshuang and WU Penghai. Multitemporal SAR image despeckling based on a scattering covariance matrix of image patch[J]. Sensors, 2019, 19(14): 3057. doi: 10.3390/s19143057
    [11]
    BHUIYAN M I H, AHMAD M, and SWAMY M N S. Spatially adaptive wavelet-based method using the cauchy prior for denoising the SAR images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(4): 500–507. doi: 10.1109/TCSVT.2006.888020
    [12]
    CHOI H and JEONG J. Speckle noise reduction technique for SAR images using statistical characteristics of speckle noise and discrete wavelet transform[J]. Remote Sensing, 2019, 11(10): 1184. doi: 10.3390/rs11101184
    [13]
    GAO Fei, XUE Xiangshang, SUN Jinping, et al. A SAR image despeckling method based on two-dimensional S transform shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3025–3034. doi: 10.1109/TGRS.2015.2510161
    [14]
    YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
    [15]
    ZHU Lei, ZHAO Xiaotian, and GU Meihua. SAR image despeckling using improved detail-preserving anisotropic diffusion[J]. Electronics Letters, 2014, 50(15): 1092–1093. doi: 10.1049/el.2014.0293
    [16]
    MISHRA D, CHAUDHURY S, SARKAR M, et al. Edge probability and pixel relativity-based speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2018, 27(2): 649–664. doi: 10.1109/TIP.2017.2762590
    [17]
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    [18]
    PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/TGRS.2011.2161586
    [19]
    CHEN Shaobo, HOU Jianhua, ZHANG Hua, et al. De-speckling method based on non-local means and coefficient variation of SAR image[J]. Electronics Letters, 2014, 50(18): 1314–1316. doi: 10.1049/el.2014.0630
    [20]
    朱磊, 蔡飞飞, 王延年, 等. SAR图像相干斑的非局部平均滤波算法[J]. 西安交通大学学报, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014

    ZHU Lei, CAI Feifei, WANG Yannian, et al. A non-local means filtering algorithm for despeckling of SAR images[J]. Journal of Xian Jiaotong University, 2018, 52(4): 98–104. doi: 10.7652/xjtuxb201804014
    [21]
    FROST V S, STILES J A, SHANMUGAN K S, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4(2): 157–165. doi: 10.1109/TPAMI.1982.4767223
    [22]
    TOUZI R, LOPES A, and BOUSQUET P. A statistical and geometrical edge detector for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764–773. doi: 10.1109/36.7708
    [23]
    朱磊, 水鹏朗, 章为川, 等. 利用区域划分的合成孔径雷达图像相干斑抑制算法[J]. 西安交通大学学报, 2012, 46(10): 83–88, 100.

    ZHU Lei, SHUI Penglang, ZHANG Weichuan, et al. A despeckling algorithm for synthetic aperture radar images using region subdivision[J]. Journal of Xian Jiaotong University, 2012, 46(10): 83–88, 100.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (759) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return