Advanced Search
Volume 43 Issue 5
May  2021
Turn off MathJax
Article Contents
Wei ZHANG, Lan DU. An Ensembling One-class Classification Method Based on Beta Process Max-margin One-class Classifier[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1219-1227. doi: 10.11999/JEIT200080
Citation: Wei ZHANG, Lan DU. An Ensembling One-class Classification Method Based on Beta Process Max-margin One-class Classifier[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1219-1227. doi: 10.11999/JEIT200080

An Ensembling One-class Classification Method Based on Beta Process Max-margin One-class Classifier

doi: 10.11999/JEIT200080
Funds:  The National Natural Science Foundation of China (61771362), The 111 Project (B18039), Shaanxi Innovation Team Project
  • Received Date: 2020-01-19
  • Rev Recd Date: 2020-11-12
  • Available Online: 2020-11-18
  • Publish Date: 2021-05-18
  • In the problem of one-class classification, One-Class Classifier (OCC) tries to identify samples of a specific class, called the target class, among samples of all other classes. Traditional one-class classification methods design a classifier using all training samples and ignore the underlying structure of the data, thus their classification performance will be seriously degraded when dealing with complex distributed data. To overcome this problem, an ensembling one-class classification method based on Beta process max-margin one-class classifier is proposed in this paper. In the method, the input data is partitioned into several clusters with the Dirichlet Process Mixture (DPM), and a Beta Process Max-Margin One-Class Classifier (BPMMOCC) is learned in each cluster. With the ensemble of some simple classifiers, the complex nonlinear classification can be implemented to enhance the classification performance. Specifically, the DPM and BPMMOCC are jointly learned in a unified Bayesian frame to guarantee the separability in each cluster. Moreover, in BPMMOCC, a feature selection factor, which obeys the prior distribution of Beta process, is added to reduce feature redundancy and improve classification results. Experimental results based on synthetic data, benchmark datasets and Synthetic Aperture Radar (SAR) real data demonstrate the effectiveness of the proposed method.
  • loading
  • [1]
    TAX D M J. One-class classification: Concept-learning in the absence of counter-examples[D]. [Ph. D. dissertation], Delft University of Technology, 2001: 13–19.
    [2]
    王布宏, 罗鹏, 李腾耀, 等. 基于粒子群优化多核支持向量数据描述的广播式自动相关监视异常数据检测模型[J]. 电子与信息学报, 2020, 42(11): 2727–2734. doi: 10.11999/JEIT190767

    WANG Buhong, LUO Peng, LI Tengyao, et al. ADS-B anomalous data detection model based on PSO-MKSVDD[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2727–2734. doi: 10.11999/JEIT190767
    [3]
    王宝帅, 兰竹, 李正杰, 等. 毫米波雷达机场跑道异物分层检测算法[J]. 电子与信息学报, 2018, 40(11): 2676–2683. doi: 10.11999/JEIT180200

    WANG Baoshuai, LAN Zhu, LI Zhengjie, et al. A hierarchical foreign object debris detection method using millimeter wave radar[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2676–2683. doi: 10.11999/JEIT180200
    [4]
    董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
    [5]
    陈莹, 何丹丹. 基于贝叶斯融合的时空流异常行为检测模型[J]. 电子与信息学报, 2019, 41(5): 1137–1144. doi: 10.11999/JEIT180429

    CHEN Ying, HE Dandan. Spatial-temporal stream anomaly detection based on Bayesian fusion[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1137–1144. doi: 10.11999/JEIT180429
    [6]
    王威丽, 陈前斌, 唐伦. 虚拟网络切片中的在线异常检测算法研究[J]. 电子与信息学报, 2020, 42(6): 1460–1467. doi: 10.11999/JEIT190531

    WANG Weili, CHEN Qianbin, and TANG Lun. Online anomaly detection for virtualized network slicing[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1460–1467. doi: 10.11999/JEIT190531
    [7]
    孟令博, 耿修瑞. 基于协峭度张量的高光谱图像异常检测[J]. 电子与信息学报, 2019, 41(1): 150–155. doi: 10.11999/JEIT180280

    MENG Lingbo and GENG Xiurui. A hyperspectral imagery anomaly detection algorithm based on cokurtosis tensor[J]. Journal of Electronics &Information Technology, 2019, 41(1): 150–155. doi: 10.11999/JEIT180280
    [8]
    PIMENTEL M A F, CLIFTON D A, CLIFTON L, et al. A review of novelty detection[J]. Signal Processing, 2014, 99: 215–249. doi: 10.1016/j.sigpro.2013.12.026
    [9]
    LAMPARIELLO F and SCIANDRONE M. Efficient training of RBF neural networks for pattern recognition[J]. IEEE Transactions on Neural Networks, 2001, 12(5): 1235–1242. doi: 10.1109/72.950152
    [10]
    SCHOLKOPF B and SMOLA A J. Learning with Kernels[M]. Cambridge: MIT Press, 2001: 469–513.
    [11]
    TAX D M J and DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11/13): 1191–1199. doi: 10.1016/s0167-8655(99)00087-2
    [12]
    FERGUSON T S. A Bayesian analysis of some nonparametric problems[J]. Annals of Statistics, 1973, 1(2): 209–230. doi: 10.1214/aos/1176342360
    [13]
    BLEI D M and JORDAN M I. Variational inference for Dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121–143. doi: 10.1214/06-BA104
    [14]
    SOLLICH P. Bayesian methods for support vector machines: Evidence and predictive class probabilities[J]. Machine Learning, 2002, 46(1–3): 21–52. doi: 10.1023/a:1012489924661
    [15]
    POLSON N G and SCOTT S L. Data augmentation for support vector machines[J]. Bayesian Analysis, 2011, 6(1): 1–23. doi: 10.1214/11-BA601
    [16]
    GEMAN S and GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(6): 721–741. doi: 10.1109/TPAMI.1984.4767596
    [17]
    WOLD S, ESBENSEN K, and GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/3): 37–52. doi: 10.1016/0169-7439(87)80084-9
    [18]
    JUSZCZAK P, TAX D M J, PE¸KALSKA E, et al. Minimum spanning tree based one-class classifier[J]. Neurocomputing, 2009, 72(7/9): 1859–1869. doi: 10.1016/j.neucom.2008.05.003
    [19]
    KOHONEN T and SOMERVUO P. Self-organizing maps of symbol strings[J]. Neurocomputing, 1998, 21(1/3): 19–30. doi: 10.1016/s0925-2312(98)00031-9
    [20]
    LANCKRIET G R G, EL GHAOUI L, and JORDAN M I. Robust novelty detection with single-class MPM[C]. The 15th International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2002: 929–936.
    [21]
    PĘKALSKA E, TAX D M J, and DUIN R P W. One-class LP classifier for dissimilarity representations[C]. Proceedings of the 15th International Conference on Neural Information Processing Systems, British Columbia, Canada, 2002: 777–784.
    [22]
    DUNSON D B and PARK J H. Kernel stick-breaking processes[J]. Biometrika, 2008, 95(2): 307–323. doi: 10.1093/biomet/asn012
    [23]
    KRUSCHKE J K. Bayesian data analysis[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1(5): 658–676. doi: 10.1002/wcs.72
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views (780) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return